Using HLA Ownership Management
in Distributed Material Flow Simulations

Steffen Strafiburger
Andreas Hamm
Giinter Schmidgall
Siegmar Haasis
DaimlerChrysler AG - Research & Technology
Wilhelm-Runge-Str. 11
89013 Ulm, Germany
+49-(0)731-505-2443 (-2377,-2330)
{steffen.strassburger, andreas.hamm, guenter.schmidgall, siegmar.haasis} @daimlerchrysler.com

Keywords:
Ownership Management, Material Flow, Engineering and Production Simulation

ABSTRACT: This article describes the application of distributed simulation under the leitmotiv of the Digital
Factory (DF). The objective of the DF is that no production facility shall be planned, constructed, and operated
without a complete prior digital coverage. In order to have a detailed digital representation of the real factory which
covers all relevant causal relationships it is necessary to combine several independently developed simulation and
planning models which each represent an isolated part of the factory. This requires a suitable IT architecture which is
capable of connecting the individual simulation models representing a process chain. HLA seams to be an
appropriate choice for this purpose.

In this article we focus on the application area of material flow simulations. For this area the HLA ownership
management services play a very important role. Our research has shown that HLA Ownership Management is
generally capable of being helpful in this area, but not sufficient. It is especially unfortunate that there are

a) no time managed versions of these services

b) no possibilities of specifying a recipient of a transferred object/attribute,

¢) no possibility to transfer the final state of the object regarding attribute values.

Related work has already been performed to analyze these deficiencies [1,2,3], but to date no solution has been
implemented in the HLA interface specification.

Therefore this article picks up the discussion about the topic and suggests a solution especially suited for material
flow applications. The presented solution is not intended as a fixed and final solution to the problem. Rather, it is
intended as a basis for discussion among industry partners and standardization boards like OMG or IEEE about the
standardization of a solution regarding the aforementioned problems.

The paper describes the introduction of ‘“connection points” (CPs) as a way of specifying sender/receiver
relationships for transferring entire object instances with their attributes. CPs are especially useful in material flow
scenarios, but also applicable for general logistical problems.

this objective also requires the heavy use of simulations
to plan and analyze the factory operation.

1. Introduction

The paper focuses on the U.S. Department of Defense

(DoD) High Level Architecture (HLA) Ownership
Management Services and its application for material
flow scenarios within the Digital Factory (DF).

The objective of the DF is that no production facility
shall be planned, constructed, and operated without a
complete prior digital coverage. Among other aspects

For providing the connectivity between different tools
and systems applied within the DF HLA seems to be an
appropriate choice. Some of the limitations of HLA in
the area of ownership management are discussed in this
article. We propose a solution which provides the
missing functionality for scenarios within the DF and
suggest to discuss about standardization efforts.

2. Distributed Simulation in the Digital
Factory

With the idea of the Digital Factory the requirements
regarding the application of simulations increase: The
objective is to have a detailed digital representation of
the real factory which covers all relevant causal
relationships. Furthermore, the simulations shall not
only be applied in the planning phase of the factory, but
also during its actual operation. Towards this objective
it is necessary to combine several independently
developed simulation models which each represent an
isolated part of the factory. Also, it may be required to
integrate operative IT systems into distributed
simulations, e.g., to run simulations based on the real
data from the current state of the factory.

2.1 The tools and the need to connect them

Simulation systems which need to be integrated into a
complex distributed simulation in the DF may include
typical material flow simulators like QUEST from
DELMIA and eM-Plant from Tecnomatix. When tools
like these (which operate on the same level of detail)
are connected, we call this is a horizontal integration.

However, it may also be required, that tools modeling
at different levels of detail are integrated for
investigating a specific problem. In a DF scenario, it
may be required to include robot simulations like
IGRIP and ROBCAD from the same respective
vendors. The latter is called a vertical integration, since
tools operating at different levels of detail need to be
connected (Figure 1).

Production lines

Process Models

w0 AL

Figure 1: Vertical Integration

2.2 The concept of a universal federate adapter
(UFA)

Connecting simulation systems and other IT systems to
the RTI is a non-trivial task which requires in-depth
knowledge of the HLA Federate Interface Specification
and a significant amount of development time [4].

Taken the fact, that much of the code for connecting a
system to the RTI is almost the same for each
application, certain functionality could be packaged
and easily reused.

For providing this capability of reusing the low level
functionality to connect a system to HLA and for
simplifying the communication of applications with the
RTI DaimlerChrysler has developed a software
package called universal federate adapter (UFA).

Protocol Layer
Transport Layer

Figure 2: Architecture of the Universal Federate
Adapter

The UFA is based on a layer design pattern. Currently

two layers are included:

e A transport layer, which encapsulates all relevant
RTI functionality (method calls to RTI as well as
federate ambassador)

e A protocol layer, which needs to be adapted to the
system which shall be connected to the RTI.

The transport layer is implemented as a library with a
lean interface to the protocol layer (15 required
functions and 16 optional functions for providing
additional information). This reduces the complexity
involved when connecting a system to the RTI and
frees the programmer from the need of becoming an
HLA expert.

It is especially important to note, that the UFA has been
very carefully designed under the aspect that no

proprietary protocol is introduced with the UFA, since
this would be contra-productive to the aims of HLA.
Our objective was that systems which are connected to
HLA via the UFA can easily interact with non-UFA
federates.

Other solutions, e.g., the IMS Mission Architecture
[6,7], have taken a different approach. They have
developed an adapter for distributed manufacturing
simulations (DMS) which is based on HLA’s RTI as
communication backbone. For adjusting to the needs of
globally distributed enterprises, this architecture makes
application specific enhancements and assumptions
about the participants and the way they interact with
each other. This works fine as long as all federates
agree on being based on DMS as a de-facto standard
above HLA. One drawback of the approach is that it
becomes difficult for federates not built for DMS to
participate in a DMS simulation.

Although the results obtained within the mission
project are significant (several simulation systems have
been connected with DMS), we felt that in our research
and development efforts we should try to strictly stick
to HLA and make no proprietary enhancements (e.g.,
by introducing specific object models, handshake
mechanisms, startup-procedures, etc.).

The only area where this attempt has failed is the area
of ownership management/transfer. Without agreeing
on a certain protocol above HLA it is not possible to
implement a synchronized and directed ownership
transfer. In the section 3 we shall report on our findings
in this area and suggest a protocol to overcome the
problems in our application area.

3. Ownership Transfer

The current HLA interface specification is generally
capable of transferring object attribute ownership.
Ownership can be transferred for single attributes or
sets of attributes of an object instance. There is no
special functionality for transferring entire object
instances between federates. The closest to migrating
entire objects is to transfer all attributes of the instance
and the special attribute “PRIVILEDGE TO
DELETE”. With the latter it is possible to transfer the
right to delete an object instance from its creator
federate to a different one.

3.1 The Need for Ownership Transfers

In many logistical scenarios it is very important to
model entities which are moved from one simulation to
another. In military simulations the entity may represent
a tank which is transported to the battlefield. In
industrial material flow applications such an entity may
be a package, a manufacturing product (e.g. a car) or
something similar.

In almost all material flow scenarios sinks and sources
are very important simulation elements. Sinks produce
items according to some statistical distribution or real
order data from the factory. Afterwards the items move
through the system according to route and processing
logics or strategies. When the item reaches a sink
element it is removed from the system.

This is the basis for almost all material flow
simulations. With this source-sink concept in mind, it is
very easy to partition a material flow simulation into
several individual models. One can insert a special
sink-source pair at the desired system boundary which
implements the task of transferring the items between
the submodels (Figure 3).

@ Split up into 2 submodels

Bl Sink element
[Source element
B Other elements

Figure 3: Creating a distributed material flow
simulation

From the HLA point of view it is necessary to transfer
the ownership of the object instance representing the
item. The side conditions typically are that the transfer
needs to take place at a specific time and must be
directed to a specific receiver (since it is usually a 1:1
relationship between the sink-source pair).

Furthermore it would be beneficial, if the receiver
could get the latest values of all instance attributes with
the transfer, since there is no need for him to know
them before he owns the object.

3.2 What’s missing in the current version of the
services

Several deficiencies of the ownership management

services exist and have been reported [2,3,8]

Here is a short summary of the critics:

1) There is no directed ownership transfer.

2) There is no possibility to explicitly reject transfer
of ownership.

3) There is no possibility to include the last valid
attribute values in the transfer.

4) The ownership management services are not time
managed.

The last item has the consequence that there is no
guaranty from the RTI at what federation time the
transfer will take place.

This is especially unfortunate for all as-fast-as-possible
simulations operating with logical simulation as it is the
case in our application area. Comparable problems in
the area of data distribution management have been
discussed in [1].

3.3 Workarounds and the need for standardization

It is acknowledged that although these problems exist,
there are ways to work around these deficiencies. One
could, for example, introduce federation specific
protocols to include the recipient ID in the
userSuppliedTag field when initiating an ownership
transfer. This would provide a mechanism for the
directed ownership transfer.

For solving the problem of having no mechanism to
reject an ownership transfer one could use time out
mechanisms, as it is done in our solution with the UFA.

For our core problem (the non-time-managed character
of the ownership management services), on could, for
instance, specify the desired time stamp of ownership
transfers using a special interaction message which is
sent before initiating the transfer via ownership
management services. With this one could introduce a
proprietary protocol for the ownership transfer which is
directed and time-synchronized.

Other workarounds address the problem that the RTI
does not store any information about released object
instances, and thus that it is not easily possible to
transfer the “best and final state of object
instances”[3,8].

The problem with all these solutions and workarounds
is that they introduce federation specific protocols

which are counter productive towards the goal of
interoperability based on a common standard. A
federate from a federation using a certain workaround
for the ownership transfer problems will most likely not
be interoperable with a federate from a federation using
a different workaround.

The next section describes our solution to the problems
and is intended as a suggestion for standardizing a
comparable solution among industry partners.

3.4 Protocol for a directed, time-stamped
ownership transfer

As mentioned in section 3.1 virtually all material flow
scenarios can apply a simple sink-source-concept to
connect different material flow federates.

From the modeling point of view each two federates
can be connected by one or more sink-source
connections which we call connection points.

A connection point (CP) is a user defined directional
connection for transferring items from one exit element
(e.g., a sink) of a simulation to an input element (e.g. a
source) of another simulation.

Each such connection point has a federation unique
identifier which is used in the ownership transfer to
identify the receiver of the transfer request. This solves
the problem that ownership management services
are not directed to a specific recipient.

By our definition a CP always implies a 1:1 connection
between elements of two simulations. In scenarios,
where two federates can deliver items for one recipient,
one would in fact have to introduce two connection
points and potentially an additional input element in the
recipient’s simulation.

The process of connecting multiple federates by
creating connection points can be supported by tools
like Federation Builder (FB), which is currently under
development at DaimlerChrysler'.

For solving the problem that the ownership
management services are not time managed we have
introduced a special protocol using ownership
management services in conjunction with an interaction
message which is time stamped. The ownership

' FB provides all required functionality of a simulation and object
model repository, like storing and retrieving simulation models,
merging (i.e., combining) SOMs and FOMs, connection simulations
using connection points, and exporting the whole federation with all
federates.

management services use the userSuppliedTag for
transmitting the CP identifier. The interaction also
carries the CP identifier as well as the instance name
and the desired time stamp.

Figure 4 shows the sequence diagram for the federate
initiating the transfer. Please note that the UFA
encapsulates all required functionality.

UFA RTI

TRANSFER(Inst A, CP,

TimeStamp) » | Own.Divestiture(Inst A, CP)
> —>

SendInteraction(Transfer,

Return TRANSFER Inst A, CP, TimeStamp)

1 1
DivestitureNotification(Inst A) | ¢——

Store in List

1 ﬁ 1

GET_EVENT ? :
fRetrieve from List 1

1

1

1

v

Return GET_EVENT

<(OUT Transfer of Inst A, TS)

Figure 4: Sequence diagram for a federate
transferring an object instance

A federate simply calls a function called “Transfer” to
initiate the transfer. During subsequent calls of
“Get_Event™, the federate will be informed about the
success of the ownership transfer.

Inside the transfer call the UFA initiates the ownership
transfer and sends an special interaction with a time
stamp, the name of the instance to be transferred, and
the connection point identifier.

The sequence diagram for the receiver side is shown in
Figure 5. The receiver will usually first receive an
ownership assumption request indicating the
availability of the instance. It then checks whether it is
the correct recipient (i.e., if the CP is defined as
incoming for the simulation). After that the UFA delays
the acquisition until the receipt of the transfer
interaction tells it the right time stamp at which the
transfer shall take place.

In some occasions, the transfer interaction may be
received before the ownership request. The working
principle in this case is very similar, i.e., the UFA will
wait until the ownership assumption request is received.

2 The Get Event function is the mechanism for retrieving all
incoming information which the UFA has received via its Federate
Ambassador and stored internally. Get Event frees the simulation
from dealing with tick() and related methods.

1
1

Own.Assumption(Inst A, CP). CP relevant?

Receivelnteraction(Transfer, 198tore in List

—
—_ Inst A, CP, TimeStamp)

*—0
4—

' _Own.Acquisition(Inst A, CP) I<*_§Retrieve from List

AcquisitionNotification(Inst A)

Store in List$! .

GET_EVENT ?

i . Return GET_EVENT
Retrieve from List

Figure 5: Sequence diagram for a federate receiving
an object instance

In any case the UFA knows the right time stamp at
which the ownership shall logically be processed by the
system and can deliver it to the system when the
GetEvent call is issued.

This protocol solves the problem that ownership
management services are not time managed. The
drawback is that it introduces a proprietary arrangement
which each federate should follow to avoid
compatibility problems.

The problem that it is not possibility to include the last
valid attribute values in the ownership transfer is also
solved internally in the UFA. The protocol layer of the
UFA keeps a list of all relevant object instances (i.c.,
all instances of subscribed classes which may be
transferred to it at a later time) and their current
attribute values. When an instance is transferred to the
federate the UFA informs the federate about the
transfer and also about the attribute values with which
the object instance needs to be initialized.

We have chosen this approach because of its general
applicability. Another way to deal with the problem
would have been to include the latest attribute values in
the transfer interaction. We have not chosen this
approach because it would introduce another
proprietary agreement.

Please note that our approach is necessary since our
material flow simulations usually do not need to keep a
copy of remote objects in their internal representation.
Therefore the UFA stores it until it is needed. Although
doing so, our approach is also applicable for training
simulations which do need to represent the state of
remote objects in their virtual environments, because
the UFA can also be told to forward any update to the
simulation immediately.

This implementation agreement circumvents the
problem that it is not possible to include the last
valid attribute values in the ownership transfer.

The last mentioned problem from section 3.2 was that
there is no possibility to explicitly reject an ownership
management transfer. This problem was reported in [2].
In our case this problem does not apply since all
instances are transferred in push-mode. The only case
were an ownership transfer can fail is if the recipient
federate is not able to accept ownership (e.g., because it
has not joined the federation). In this case the UFA
applies a time out mechanism which aborts the transfer
if it was not successful for a certain amount of
processing time.

4. Conclusions

The paper has described the introduction of
“connection points” (CPs) as a way of specifying
sender/receiver relationships for transferring entire
object instances with their attributes. CPs are especially
useful in material flow scenarios, but also applicable
for general logistical problems.

Furthermore a time-synchronized ownership manage-
ment protocol has been described, which allows the
directed transfer of object instances.

It is essential to stress the need of standardization in
this area. We are not suggesting that our solution is best
suited in any case. Rather, it can be seen as one
possibility for solving the problems. This could be the
basis for finding an standardized solution or at least an
agreement among industry partners from the
automotive sector and its suppliers. Other input for
standardization can be taken from [5].

The straight forward way of dealing with the problem
would of course be an enhancement of the HLA
Interface Specification. Unfortunately this is not very
likely to happen.

5. References

[1] R. Fujimoto, I. Tacic: “Time Management of
Unsynchronized HLA Services”, 1999 Fall
Simulation Interoperability Workshop, Sept. 8-12,
1999. Paper Number 99F-SIW-165.

[2] G. Sauerborn et. al: “HLA Ownerhsip
Management Services: We Almost Got it Right”,
2000 Fall Simulation Interoperability Workshop,
Sept. 17-22, 2000. Paper Number 00F-SIW-076.

[3] M. Myjak, S. Sharp, T. Lake, K. Briggs. “Object
Transfer in HLA”. 1999 Spring Simulation
Interoperability Workshop, Mar. 14-19, 1999.
Paper Number 99S-SIW-140.

[4] S. StraBburger: “Distributed Simulation Based on
the High Level Architecture in Civilian
Application Domains”. Ghent: SCS-Europe
BVBA, 2001. ISBN 1-565552180.

[5] F.-W. Jaeckel, M. Rabe: “Input to Standardization
Working Groups”, Deliverable D21. Result of the
IMS Mission Project. Publicly available at
http://www.ims-mission.de.

[6] C. McLean, F. Riddick, S. Leong: “Architecture
for Modeling and Simulation of Global Distributed
Enterprises”. In: Proceedings of the 9th ASIM
Dedicated Conference, eds. K. Mertins and M.
Rabe. ISBN 3-8167-5537-2.

[7]1 C. McLean, F. Riddick: “The IMS MISSION
Architecture for Distributed Manufacturing
Simulation”. In: Proceedings of the 2000 Winter
Simulation Conference, eds. J. A. Joines, R. R.
Barton, K. Kang, and P. A. Fishwick, pp. 1539-
1548.

[8] M. Myjak, T. Lake, D. Roberts, B. Worthington:
“Timing: Mechanisms for Ownership Transfer”.
2000 Spring Simulation Interoperability
Workshop, Mar. 26-31, 2000. Paper Number 00S-
SIW-140.

Author Biographies

STEFFEN STRASSBURGER is a research assistant
at the DaimlerChrysler Research Center in Ulm,
Germany. He holds a PhD and a Master’s degree in
Computer Science from the Otto-von-Guericke
University in Magdeburg, Germany. His international
experience includes a one-year stay at the University of
Wisconsin, Stevens Point and a stay at the Georgia
Institute of Technology, Atlanta. He actively
participates in several international conferences. His
main research interests lie in distributed and web-based
simulation and the High Level Architecture.

ANDREAS HAMM is has studied Computer Science
at the Technical University in the Ilmenau, Germany.
Main emphasis during his studies were software
technology and mathematics. His Diploma Thesis was
carried out at the DaimlerChrysler Research Center in
Ulm, Germany, and dealt with the development of an
plug-and-play-capable interface for distributed
simulations. In 2001 Mr. Hamm joined the Knowledge
Transfer Group of DaimlerChrysler.

http://www.ims-mission.de/

GUNTER SCHMIDGALL has studied Mechanical
Engineering at the Technical College Heilbronn. From
1982 to 1992 he carried out different occupations in the
areas of applied CAx technologies and optimization of
product development chains. From 1992 to 1998 he
worked as a freelancer in the areas IT for engineering
and new technologies for the product development. He
also participated in several research projects. Since
1998 Mr. Schmidgall is responsible for the Distributed
Simulation group at the DaimlerChrysler Research
Center in Ulm.

SIEGMAR HAASIS holds a PhD degree in
Mechanical Engineering (CAD/CAM, Expert Systems,
Feature Technology) and a Diploma in Mechanical
Engineering and Computer Science. In 1995 he joined
the Daimler-Benz International Management Associate
Program. He has worked as a Project Leader within
Technology Development at Untertiirkheim. Since
1999 he is the Senior Manager of the Research and
Technology Department “Product, Process, Resource
Integration” within the Lab “IT for Engineering”.

	Introduction
	Distributed Simulation in the Digital Factory
	The tools and the need to connect them
	The concept of a universal federate adapter (UFA)

	Ownership Transfer
	The Need for Ownership Transfers
	What’s missing in the current version of the services
	Workarounds and the need for standardization
	Protocol for a directed, time-stamped ownership transfer

	Conclusions
	References

