

SLX-MODEL AND PROOF ANIMATION BASED VISUALIZATION
OF THE RIGA BALTIC CONTAINER TERMINAL

Steffen Straßburger, Thomas Schulze
Department of Computer Science

Otto-von-Guericke University
Universitätsplatz 2

30106 Magdeburg, Germany
E-mail: {strassbu, tom}@isg.cs.uni-magdeburg.de

Juri Tolujev
Riga Technical University

Department of Modeling and Simulation
Riga, LV 1658, LATVIA
E-mail: tolujev@itl.rtu.lv

KEYWORDS

Simulation, SLX, Container terminal.

ABSTRACT

The paper describes the SLX-based simulation of
the Riga Baltic Container Terminal (BCT) and the
visualization of the model based on Proof
Animation for Windows. The work is a result of the
INCO2 1997 Project PL976012 DAMAC HP,
funded by the European Commission, DGXIII.

SLX-BASED SIMULATION

SLX is a discrete event simulation tool for the
Windows 95/98/NT/2000 operating systems
developed by the Wolverine Software Corporation
(Henriksen 1997a). SLX is a classical simulation
language-oriented stand-alone tool that includes a
programming language with a C-like syntax. SLX
is the designated successor of the well-known
GPSS/H.
When transferring an existing GPSS/H simulation
model to SLX, the user has two general options for
doing this:
a) The user can use the SLX-hosted

implementation of GPSS, contained in the
H5/H6.SLX modules. This implementation
was built to support the adoption process of old
GPSS users converting to SLX. At the same
time it demonstrates one of the main strengths
of SLX, its extensibility. Within the SLX
language the users can define their own
statements and thus build simulation packages
on top of the actual SLX language. This has
been done with the GPSS language. The SLX-
hosted implementation of GPSS supports the
GPSS language to a large extend, but not
completely. Some re-writing of GPSS models
may be necessary to adopt them to make them
run under SLX.

b) The other choice is to completely re-develop an
existing GPSS/H model with the native SLX
constructs and approaches. While at the first
view this seems to be the more time-consuming

approach it also has several advantages. In a lot
of cases, techniques used for producing good
GPSS/H models result in bad SLX models, if
models are transliterated from GPSS/H to
SLX, or if new SLX models are developed
imitating GPSS/H style. Probably the biggest
offending technique is using integer indices to
access entities. In GPSS/H, this is the only way
to access a facility in the single collection of
facilities available at run-time. In SLX, one can
have arrays of facilities, facilities as sub-
objects, dynamically created facilities, etc.
Failure to take advantage of these improved
ways of organizing data and objects is resulting
in badly readable SLX models.

IMPLEMENTATION OF THE SIMULATION
MODEL FOR RIGA BCT

In the development of an SLX based simulation
model of the Baltic Container Terminal (BCT) it
also had to be decided which strategy was to be
used. An GPSS/H model of the harbor was existing
(at least in major parts). In first experiments it was
tried to use approach a) described above. Soon the
disadvantages of this approach were discovered and
the development efforts were redirected to use
approach b). One extra-advantage of this approach
is that native SLX models can easily fit into the
HLA world view of objects and interactions
(Straßburger 1998, 1999). This tremendously
facilitates the interoperability aspects, e.g., if in
future the BCT model should be coupled with other
components or programs.
The implementation of the BCT in SLX has been
structured in the following way: For all moving
entities of the model, active SLX object classes
have been defined. SLX distinguishes between
active and passive objects. While passive objects
merely function as complex data types, i.e., a
collection of attributes without own functionality,
active objects also define the properties, i.e., the
behavior, of a class.
The active objects contained in the model include
the following classes:

• cl_Ship models the arriving ships, their
unloading and loading processes, and their
departure

• cl_Trailer models the trailers moving through
the container yard

• cl_Crane models the different cranes located in
the harbor. Different sub-types exist for
instance for the quay cranes and the railway
cranes

• cl_Train models arriving and departing trains
and their loading and unloading

• cl_Truck models truck sets which arrive and
deliver/receive containers

Fig. 1 and 2 depict the relationships between the
most important classes of the model and also shows
their attributes and properties.

cl_Ship
- Containers for import and export
- Number of Q-Cranes -> Type: big or small
- Arrival time, pause times

cl_Crane
- Operation Time (Distribution)
- Position in harbor
- Assigned ship

cl_Trailer
- Distribution of moving speed

(full/empty)
- Assigned ship and crane
- Position, Status

uses one
or two

uses a predefined
number of

loads and
unloads

Figure 1: Relationship of Important Classes of the SLX Model and their attributes

cl_Ship
- Enter harbor, when space available
- Assign Q-cranes
- Pause1, generate trailers for import, import by Q-crane(s)
- Pause2, generate trailers for export, export by Q-crane(s)
- Pause3, leave harbor

cl_Crane
- Wait for available trailers
- Activate trailer
- Perform import (or export)
- Send trailer into yard
- When done: Destroy trailers

cl_Trailer
- Waits for activation by crane
- load/unload container
- move into container yard
- load/unload container
- move back to the crane, wait

uses one
or two

uses a predefined
number of

loads and
unloads

Figure 2: Relationship of Important Classes of the SLX Model and their behavior

The management of resources in the SLX model is
performed using sets. Sets are a common way of
modeling the management of resources in the SLX
language. In the model, all quay cranes are, for
instance, part of the set “AllCranes” which marks
its members as available. When cranes are assigned
to a ship they are removed from this set and placed
into the ship’s set “MyCranes”. Thus they are
marked as currently busy serving a certain ship. A
similar strategy is used for trailers. Trailers are
initially created for a certain ship, placed into the
ship’s set of available trailers, and removed by a
crane once the crane is ready to load/unload the
trailer.

VISUALIZATION OPTIONS BASED ON
PROOF ANIMATION

Proof Animation is a general-purpose animator
designed for use with the widest possible variety of
simulation tools. Every Proof animation requires
two ASCII input streams,
• a layout stream, describing static

characteristics of an animation, e.g., the
background drawing over which objects move,
and

• a trace stream, which is a time-ordered
sequence of commands which create, destroy,
move, and otherwise change objects displayed
on the layout, portraying events in a
simulation.

Both of these streams are free-format ASCII text,
with well documented (“open”) architectures which
can be generated easily in a variety of ways
(Henriksen 1998, 1999).
Proof can be used in post-processing mode or
directly driven by another program. When Proof is
used in post-processing mode, its input streams
must be stored in files. Trace files are almost
always written using a simulation language or
package, such as SLX (Henriksen 1997b), GPSS/H,
Extend, Slam, Siman, Simscript II.5, etc. Layout
files are almost always developed using Proof’s
built-in drawing tools. Proof also includes a CAD
import feature, allowing importing of .DXF files.
When Proof is directly coupled to simulation
software, input streams are transmitted to Proof one
line at a time via subroutine calls. Proof can be
directly driven by any program which is capable of
constructing C-compatible Dynamic Link Library
(DLL) calls; i.e., the directly driven version of
Proof is packaged as a Windows DLL.

IMPLEMENTATION OF THE VISUALIZA-
TION OF THE BCT MODEL

The simulator SLX is tightly coupled with the DLL
version of Proof and could thus be easily used for
performing on-line visualization of the BCT model.
Since the target scenario which was to be achieved
within the project has SLX run in a distributed

environment on a web-server, the traditional post-
processed animation option was chosen as the
default visualization. Optionally it is possible to
switch to a local on-line animation, if SLX and
Proof are available locally. This can be done easily
with minor modifications of the model, i.e., by
exchanging the default include file “proof3.slx” (for
post-processed animation) to “p4dll.slx” (for on-
line visualization).
The implementation of the visualization of the
SLX-BCT model makes extensive use of the path
concept of Proof. All important points in the layout,
e.g., position of cranes, loading and unloading
stations for ships and trains, positions of container
yards, etc. are assigned a unique number in the
layout. Between each of the points paths following
a certain naming convention exist. A path
connecting position 17 (the left most quay crane in
Fig. 3) and a position 3 (one of the container yards)
would be named “pa1703”. In the opposite
direction, a path named “pa0317” exists. All
movements of vehicles, e.g., trailers and trucks,
take place on these paths.
The SLX model dynamically constructs the paths
which vehicles like trailers use. It analyzes the
input files for the distances between certain points
and adjusts the speed of trailers accordingly. Fig. 3
shows an example of the path layout of the
visualization layout.

Figure 3: Screenshot showing the path layout of the Proof Animation of the BCT

SUMMARY

The combination of SLX and Proof Animation
provides powerful mechanisms for building models
in a high performance simulation language and
performing visualization in post-run as well as on-
line mode.
The combination of both tools has special
advantages when it comes to dynamically changing
the layout. The SLX model is completely
independent from the animation model in terms of
layout issues as long as the path naming
conventions are kept. This way it is easily possible
to experiment with different routing strategies in
the container yard. All relevant data that the SLX
model needs to know is provided by the input data
file. This file can be created in different ways:
manually, by an automatic analysis of a Proof
layout file, or by assuming certain standard values.

REFERENCES

Henriksen, J. O. 1997a. An Introduction to SLX. In
Proceedings of the 1997 Winter Simulation
Conference, eds. S. Andradóttir, K.J. Healy, D.H.
Withers, B.L. Nelson, pp. 559-566.

Henriksen, J. O. 1997b. SLX and Proof Animation.
In Deussen, O. and P. Lorenz (Ed.), Proceedings of
the Simulation and Animation Conference
Magdeburg, March 6.-7., 1997. SCS European
Publishing House San Diego / Erlangen / Ghent /
Budapest 1997, pp. 287-294.

Henriksen, J.O. 1998. Windows-Based Animation
with Proof. In Proceedings of the 1998 Winter
Simulation Conference, eds. Medeiros, D., E.
Watson, J. Carson, and M. Manivannan, pp. 241-
247. SCS, Washington

Henriksen, J.O. 1999. General-Purpose Concurrent
and Post-Processed Animation with Proof™, In
Proceedings of the 1999 Winter Simulation
Conference, eds. P. A. Farrington, H. B. Nembhard,
D. T. Sturrock, and G. W. Evans, pp. 176-181.
SCS, Phoenix.

Straßburger, S. On the HLA-based Coupling of
Simulation Tools. In Proceedings of the 1999
European Simulation Multiconference, ed. H.
Szczerbicka, pp. 45-51 (Vol. 1). SCS, Warsaw,
Poland.

Straßburger, S., T. Schulze, U. Klein, J. O.
Henriksen. 1998. Internet-based Simulation using
off the shelf simulation tools and HLA. In
Proceedings of the 1998 Winter Simulation
Conference, eds. Medeiros, D.J. and E. Watson,
Washington D.C.

ABOUT THE AUTHORS

STEFFEN STRASSBURGER holds a Master’s
degree in Computer Science from the Otto-von-
Guericke University in Magdeburg, Germany. He is
currently working towards his PhD at the Institute
for Simulation and Graphics at the same university.
His experience with inter-networking and
simulation includes a one-year stay at the
University of Wisconsin, Stevens Point and a stay
at the Georgia Institute of Technology, Atlanta. His
main research interests lie in distributed simulation
and the High Level Architecture.

THOMAS SCHULZE is an Associate Professor in
the School of Computer Science at the Otto-von-
Guericke-University in Magdeburg. His research
interests include modeling methodology, public
systems modeling, manufacturing simulation, and
distributed simulation with HLA. He is an active
member in the ASIM, the German organization of
simulation.

JURI TOLUJEV is an Associate Professor in the
Department of Modelling and Simulation at Riga
Technical University. His research interests include
simulation modeling and analysis, simulation
models building, verification, and validation based
on record data interpretation.

