
296 SIMULATION NOVEMBER 1999

TECHNICAL ARTICLE
SIMULATION 73:5, 296-303
© 1999, Simulation Councils, Inc.
ISSN 0037-5497/99
Printed in the United States of America

1. Introduction
The DoD’s High Level Architecture for Modeling and
Simulation (HLA) can certainly be regarded as the state
of the art in distributed simulation. This holds true for
the military simulation community per se, since this is
the origin of HLA.

A comparison of the military with the civil simula-
tion world shows that, on the one hand, it is mostly
the terminology that differs. Although the approaches
and general methods which are used in both simula-
tion communities are very similar, the terminology is
entirely different [1]. Terms such as dead-reckoning and
constructive/virtual/live simulation are relatively seldom
used in the civil world, although equivalent techniques
exist and are commonly applied.

On the other hand, there is a major difference in
how simulations are developed. While in the military
community, simulations are often developed in lan-
guages such as C++, ADA, or even Java, in the civil
simulation community, the use of commercial simula-
tion tools (e.g., Arena, GPSS/H, MODSIM, Pro Model,
Simple++, SLX, etc.) is commonplace. These simula-
tion tools satisfy the need to develop models rapidly
and cost-effectively. It is rather unusual to develop
simulations in programming languages such as C++.
There are several well-known reasons for this:

Migration of HLA into Civil Domains:
Solutions and Prototypes for
Transportation Applications

Thomas Schulze, Steffen Straßburger
Department of Computer Science

Otto-von-Guericke University Magdeburg
Universitätsplatz 2

39106 Magdeburg, Germany

Ulrich Klein
Fraunhofer Institute for

Factory Operation and Automation
Sandtorstraße 22

39106 Magdeburg, Germany

The United States Department of Defense’s
(DoD) High Level Architecture for Modeling
and Simulation (HLA) is a mandatory stan-
dard for military simulations. The situation
in the civil simulation community is differ-
ent: simulator interoperability is desirable
and even required, but there is no driving
force to mandate the use of a certain standard.
This article addresses the problems that a
simulator interoperability standard in the
civil world faces and discusses how HLA can
possibly become the standard that is needed.
Several solutions for connecting civil simula-
tion tools using HLA are introduced and
some prototypical applications focusing on
the area of transportation are demonstrated.

Keywords: HLA, civil application, dis-
crete event simulation, interoperability,
transportation

NOVEMBER 1999 SIMULATION 297

1. C++ is difficult to learn.
2. It is too easy to make mistakes which have disas-

trous consequences, but are difficult to find, e.g.,
faulty use of pointers.

3. It lacks an inherent mechanism for describing par-
allelism.

4. Its debugging tools are simulation-unaware, i.e.,
they operate at a level far below that which would
be convenient for most simulationists.
These different approaches for developing simula-

tions also apply to HLA. While it is rather straightfor-
ward to use HLA in a simulation developed in C++,
alternative means have to be used when developing a
simulation in a simulation language. Although there
is a need for interoperability, the access to the HLA
Application Programming Interface (API) from the
tools used in the civil world is usually not directly
possible.

Therefore, this article discusses requirements and
solutions for applying HLA in the civil world (Sec-
tion 2) and introduces several sample federations fo-
cusing on transportation applications (Section 3).

2. HLA Interfaces for Simulation Tools
In order to enable simulation tools to access the HLA
API and its interoperability software, called Runtime
Infrastructure (RTI), performing low-level program-
ming in a typical programming language such as C++,
Java, or ADA is inevitable. It is highly desirable for
simulation developers to only have to perform this
task once for a variety of models. Therefore simulation
model-independent solutions are needed. This kind of
approach can be classified as a “tool enhancement ap-
proach.” Ideally, this task would be performed by the
tool developers themselves. Since only very few simu-
lation tool developers actually see the necessity to
build an HLA interface into their tools, model devel-
opers quite often are confronted with building it on
their own.

HLA interfaces for simulation tools can be classified
from two distinct perspectives: the first one is the
programmer’s perspective (the person developing the
HLA interface and doing the low-level programming);
the second one is the user’s perspective (the person
developing HLA-based models) [2].

2.1 The Programmer’s Point of View
For the actual task of accessing the HLA API by doing
low-level programming, the following general strate-
gies have been introduced in [3].

• Re-Implementation of the Tool

If the source code of a tool is available, this is most
likely a straightforward solution. Simplex 3, a simula-
tion tool developed at the University of Passau, Ger-
many, has been enhanced for HLA functionality in
this manner.

• Extension of Intermediate Code

Some simulation tools translate model descriptions
written in a tool-dependent modeling language into
another programming language (e.g., C++). This in-
termediate code is then compiled to an executable file.
It is possible to modify this intermediate code to real-
ize the HLA extensions. Since this code is compiler-
generated, an automated solution is desirable.

• Usage of an External Programming Interface

This solution is well suited for tools that offer an
open and extensible architecture. The tool should of-
fer a library interface (in Windows, a DLL interface)
with the ability to call arbitrary functions or methods
in these libraries. The HLA interface for the simula-
tion tool SLX [4] has been implemented using this ap-
proach.

• Coupling via a Gateway Program

The last solution for tools which cannot access the
HLA API by any of the prior methods is the develop-
ment of a gateway program. The gateway program
could communicate with the simulation tool via ap-
propriate means (e.g., files, pipes, ports, network)
depending on the capabilities of the simulation tool.
An example for a gateway solution is the DIS-HLA
gateway [5, 6].

The four strategies discussed above address the
question of where and how to perform the low-level
access to the HLA interface from the programmer’s
point of view. In the next section, we will discuss in
which form the user (i.e., the model developer) can be
confronted with the HLA API and what the access to
the HLA interface could look like.

2.2 The User’s Point of View
There are two general ways of providing HLA func-
tionality to a model developer. The first alternative is
to provide a simulation language or simulation tool-
specific mapping between the HLA API (e.g., the C++
or Java API) and a tool-specific API. This approach is
called the explicit approach, since the simulation model
has to explicitly use HLA functionality (i.e., RTI func-
tion calls).

The second alternative is to totally “hide” the HLA
functionality from the model developer. This approach
is called the implicit approach, since the simulation sys-
tem handles all HLA communication internally. The
simulation developer is not concerned with HLA func-
tionality, because all RTI calls are performed “implic-
itly” when they are appropriate (e.g., when an object
attribute changes).

• The Explicit Approach

This solution is well suited for cases in which a li-
brary interface of the simulation tool is used to provide
HLA functionality. In this case the library provides
the users with functions that they have to call from

298 SIMULATION NOVEMBER 1999

within their models. The functions that the model can
call should correspond to the methods defined in the
HLA Interface Specification.

Since most simulation tools do not provide the pos-
sibility to define callback functions (i.e., functions
which can be called from other software modules),
alternative means have to be used for transferring data
back to the tool. This is necessary because the HLA
programming paradigm requires the implementation
of callback functions which receive incoming data via
callbacks from the RTI.

The SLX-HLA interface uses this approach to pro-
vide HLA functionality to the model developer.

• The Implicit Approach

In this approach all HLA functionality is hidden
from the model developer.

A solution which uses this approach needs to per-
form the following tasks automatically:
• Synchronization with other federates: a conserva-

tive approach operating with zero lookahead would
ensure universal validity, although it is (due to
performance issues) generally desirable to operate
with larger lookahead values [7]. The tool would
automatically synchronize with other federates via
the standard HLA mechanisms.

• Automatic generation of updates/interactions (if
model variables change) that are reflected in HLA
objects or interactions.

• Automatic ghosting of objects and mapping onto
appropriate model variables. Ghosting is a meth-
od of creating local copies of remote objects for

receiving and storing updates about them.
• Conversion between tool-specific data types and

data types as defined in the Federation Object
Model (FOM). This also requires conversion of dif-
ferent endian types of different hardware platforms.
Such a below-the-surface approach can usually be

applied only if the source code of the simulation tool
is available. The prototype of the HLA interface for
Simplex 3 is an example where this approach was
taken.

2.3 Enhanced Simulation Tools
The main focus of the research presented in this article
has been to test and validate the different approaches
presented in the previous section with different simu-
lation systems and to develop some prototypical ap-
plications in the civil sector. In two separate projects
at the Universities of Magdeburg and Passau, HLA
interfaces for the simulation systems SLX and Sim-
plex 3 have been developed.

The HLA interface for SLX uses the Dynamic Link
Library (DLL) interface of SLX to access a wrapper
library (i.e., the solution uses the explicit approach
from the user’s point of view). The wrapper library is
implemented as a Windows DLL and provides access
to the HLA API. SLX models have to explicitly call
HLA API functions for synchronization and data ex-
change.

The HLA interface for Simplex 3 uses the implicit
approach outlined above. Therefore, the source code
of the runtime system of Simplex 3 has been extended
with HLA functionality [8]. The model description of

Table 1. Categorization of the HLA interfaces for simulation tools

* Contact manufacturer for detailed information.

Re-Imple-
mentation

Gateway
Program

Inter-
mediate
Code

Explicit Implicit
External
Programming
Interface

University of
Magdeburg

Tool Programmer’s Point of View
User’s Point

of View Status
Developed

By

SLX X X Released; model-
independent

Pro Model X X Experimental;
model-dependent

Fraunhofer
IPA

Automod X X Experimental;
model-dependent

TU Berlin

Simplex 3 X X Experimental;
model-independent

University
of Passau

Modsim III X* X Released; model-
independent*

CACI Corp.

Matlab X X Experimental;
model-independent

Universities
of Rostock
and Wismar

NOVEMBER 1999 SIMULATION 299

a Simplex model does not include any HLA specifics.
The only way to connect a Simplex model to other
federates is by providing a special component which
specifies the mapping of Simplex variables to HLA
data structures. This has the advantage of an increased
reusability of Simplex models.

Other ongoing efforts to develop HLA interfaces
are found in both the academic and business commu-
nities. Table 1 gives an overview of some of the simu-
lation tools which already have an HLA interface to
date and which approach was used for them.

3. Applications of HLA In Transportation
Prototypes

Transportation and logistics are classical application
areas of simulation and also the first areas to which
HLA has been applied in the civil simulation commu-
nity. This application area covers the detailed model-
ing of logistical processes in production facilities as
well as traffic management systems in cities and larger
areas. This also includes the modeling of general
transportation systems such as AGVs (automatically
guided vehicles), cars, trucks, ships, etc.

Since it is not possible to introduce prototypes for
the entire spectrum of transportation applications, the
following sections introduce three prototypes which
were developed with the direct participation of the
authors. The prototypes stem from different applica-
tion domains within transportation and logistics. Some
specific interoperability aspects of HLA were tested
with each prototype.

3.1 The Distributed Driving Federation
The distributed driving simulation was developed as
a joint effort of the Institute for Simulation and Graphics
at the University of Magdeburg and the Competence
Center Informatik GmbH [9, 10]. The federation con-
sists of federates that were brought into the project by
both partners and independently extended for HLA
compatibility. The simulation federates are based on
existing simulation applications (legacy applications)
of the partners.

Table 2 gives an overview of the participating fed-
erates and the environments in which they have been
developed.

The federates participating in this federation are:

• Federate Driving Simulator: The basis for this fed-
erate is a real-time driving simulator for off-road
driving within a synthetic environment. In the
original simulation there was no street traffic mod-
eled. The simulator is a C++ program for SGI ma-
chines and offers a 3D visualization based on the
SGI’s Performer software.

• Federate Traffic Simulator: This federate is based
on a discrete event traffic simulation model for
urban street traffic which focuses on the psycho-
physical behavior of street traffic flow. The simula-
tion has been implemented with SLX. This feder-
ate models the street traffic and had to be extended
to be able to react to the vehicle modeled by the
driving simulator.

• Federate Observer: This federate is based on the
Skopeo animation system which is discussed in
Section 3.2.2. The federate was used to obtain an
additional visualization of the federation.
The main focus in this federation was to test the inter-

operability capabilities offered by HLA under certain
aspects. The federation successfully demonstrated that
HLA is capable of supporting the following aspects:
• Interoperability among federates using different

time-advance mechanisms (real time versus event
oriented versus scaled real time)

Table 2. Federates participating in the Distributed Driving Federation

Figure 1. Screen shot of the interacting
vehicles within the synthetic environment

Federate
Time

Advancement Hardware/Operating System Language

Driving Simulator Real-Time SGI IRIX C++

Traffic Simulator Event-Oriented PC Windows NT SLX

Observer Scaled Real-Time Anywhere
(Java Applet)

Java

300 SIMULATION NOVEMBER 1999

• Interoperability among heterogeneous hardware
platforms (SGI versus Windows PC versus platform-
independent Java applications)

• Interoperability among different implementation
languages (C++ versus SLX versus Java)

• Interoperability among different network environ-
ments (LAN versus ISDN link versus Internet)
In the federation, the Traffic Simulator provided

the vehicles for the synthetic environment of the Driv-
ing Simulator (Figure 1).

 The vehicles were correctly displayed, including
collision detection, accelerated movements, etc. On
the other hand, the Traffic Simulator received the po-
sition updates from the virtual vehicle modeled by
the Driving Simulator and adjusted the movement of
its vehicles accordingly (e.g., by reducing speed if the
virtual vehicle came into closer range).

3.2 The Streetcar Federation
The Streetcar Federation models a public traffic man-
agement scenario in the city of Magdeburg, Germany,
and was developed with the support of the Magdeburg
Transportation Company (MVB).

The main purpose of the federation was to develop
an application which demonstrates how HLA facili-
tates the transparent integration of real-time-dependent
data into simulation models [11].

3.2.1 The Simulation Federate
The “heart” of the federation is a simulation federate
which performs a schedule-based simulation of the
public transportation system in Magdeburg (i.e., street-
cars). This federate has been developed using the sim-
ulation system SLX.

The actual simulation model behind it is a classical
analytical (or constructive) simulation using logical

simulation time. The most interesting interoperability
aspect is that the model can:
1. Run as a pure model in the absence of input from

the outside world, or
2. Accept real-time data as corrections to predicted

vehicle positions when coupled to the outside
world.
Communication between the simulation and the

online data source, as well as with other federates, is
based on the HLA interface.

The simulation model uses the SLX-HLA Interface
to acquire timestamp-ordered events containing posi-
tion updates of the simulated objects and to synchro-
nize its local simulation clock with other federates.

The simulation model has to compare the current
real-life positions of the streetcars with the “simu-
lated” positions. In case the positions do not match,
the running simulation is brought up to date, i.e., the
real-time data influences the simulation model. With
this approach it is possible to have a simulation model
which always represents the state of the real system in
very good approximation.

The possible setup alternatives of the federation are
shown in Figure 2.

3.2.2 The Animation Federates
Two different tools have been used for producing
online animations of the federation.

The first tool is the Web-based animation system
Skopeo [12]. Skopeo is a general animation system
which provides platform-independent system anima-
tion anywhere on the World Wide Web. Skopeo has a
prototypical HLA interface which is based on the beta
version of the Java RTI 1.0 from DMSO. The Java RTI
1.0 has (in later RTI versions) been replaced by Java
bindings to the C++ RTI.

Figure 2. Setup of the traffic management prototype based on the composition principle

Infrastructure

Local Traffic
Simulation

Local Traffic
Animation

Location
Information

Additional
Components

Signals Online

archived
constructed

Geographical
Information

System

Provides:
• Map
• Network
• ...

Time
Sched-

ule

archived
constructed (planned extensions)

Location
Information

Obj.Mod. Sim. OM Anim. OM Online OM ... OM GISOM Online

Identical Object Models

Route
Network

(GIS is intended to be the future network provider)

NOVEMBER 1999 SIMULATION 301

The second tool which has been used in this federa-
tion is Proof Animation™ for Windows [13]. Proof
Animation provides online animation on Windows
platforms and can be used by a wide variety of pro-
grams. In order to produce online animation with
Proof, a program to drive Proof is needed. Since a li-
brary (Windows DLL) version of Proof and an SLX
interface to the Proof DLL were available, it was de-
cided to use SLX to drive Proof Animation (Figure 3).

3.2.3 The Real-Time Data Federates
To provide real-time data for the simulation federate,
two different alternatives were developed:

• Usage of Online Data

In this alternative an online federate is used to pro-
vide position updates from the streetcar vehicles for
the other federates.

The online federate starts a receiver process to con-
nect to the command and control computer of the
Magdeburg transportation company. From there it
receives position updates which are obtained from the
“real-life” streetcars using infrared transmitters which
each streetcar carries. It should be noted that the posi-
tion updates are only delivered each time a streetcar
passes certain sensors located along the route network.

These position updates are then sent into the fed-
eration and received by the simulation federate using
interactions. In the time interval between two updates
the simulation federate has to interpolate the current
position based on the streetcar schedule.

• Usage of Offline Data

An offline federate which has the same object
model as the online federate can be used to substitute
for the online federate. This can be useful for testing
certain scenarios, e.g. operator training, or to replay a
situation for further analysis. The offline federate uses
pre-recorded data about position updates which are
read from a file.

3.2.4 Applications for the Streetcar Prototype
There are two major applications for the Streetcar
Federation:

• Visualization of the Current State of the Real-
Life System

It seems obvious that visualization without simula-
tion could show a streetcar only at the time it passes a
sensor located along the route network. This is clearly
not a sufficient representation of the system. There-
fore the simulation model interpolates the current po-
sitions of a streetcar between two sensors and visual-
izes the streetcars accordingly. By being able to
separate the online visualization from the simulation
(i.e., by using separate federates), it is possible to ob-
tain a location-independent animation. This has the
advantage of being able to view the visualization at
different (and multiple) locations inside the intranet
of the transportation company. This approach could
also be transferred to the fleet management of other
logistics companies.

Figure 3. Screen shot of the streetcar federation obtained with Proof Animation for Windows

302 SIMULATION NOVEMBER 1999

• Dispatcher Training

For this application scenario the real-time data is
obtained from the offline federate. The offline federate
provides certain scenarios in which the dispatcher
must react to system conditions. The dispatcher does
not need to leave his normal operating environment
and does not need to know if he is operating in a real
situation or in a constructed scenario.

3.3 The Barrel Filling Federation
This federation was developed in cooperation between
the Universities in Magdeburg and Passau and is the
first federation featuring a federate modeled with the
simulation system Simplex 3. Simplex 3 is a simulation
system developed at the University of Passau which
can be used for discrete and continuous systems.

The main target in this federation was to combine
the advantages of both the simulation systems used in
this federation. SLX offers very good capabilities for
modeling logistical processes because of its process-
oriented world view. Simplex 3 has the ability to de-
velop continuous models in a comfortable fashion
and offers several procedures for the numerical inte-
gration. It was most desirable to combine these ad-
vantages of both systems to form a new (distributed)
model consisting of two “sub-models,” or federates,
in the HLA sense.

The federate developed with Simplex 3 simulates a
chemical barrel filling station. The filling of barrels is

modeled as a continuous process described by differ-
ential equations.

The second federate is an SLX model which simu-
lates the logistical processes in a transport agency. Or-
ders for barrels are generated from different locations
throughout Germany and passed to the barrel filling
station. The SLX federate also performs an online vis-
ualization of the federation with Proof Animation for
Windows (Figure 4).

The federation successfully demonstrated the coop-
eration of a discrete simulation model written in SLX
and a combined model developed with Simplex 3.

Further applications exist in any simulation project
which consists of models of which sub-components
would ideally be modeled with different modeling
tools.

4. Summary
Our work shows that the civil simulation community
could make very good use of approaches for compos-
ing simulations from modular, re-usable components.
The U.S. DoD’s High Level Architecture can provide a
suitable infrastructure for constructing simulation
federations in this manner.

While in the military sector, most applications are
developed using C++ and thus automatically qualify
for the usage of HLA, the situation in the civil sector
is different. The use of commercial simulation tools is
very common. Although there is a need for simulator

Figure 4. Screenshot of the Simplex-SLX federation

NOVEMBER 1999 SIMULATION 303

interoperability in the civil sector too, one should not
underestimate the effort necessary for developing a
tool-specific HLA interface.

The simulation systems SLX and Simplex 3 are ex-
amples of systems that have been successfully equipped
with HLA interfaces. Although they use completely
different approaches, federations between these two
are now possible. The future will show whether civil
industry partners have an actual interest in using the
possibilities offered by HLA.

5. References
[1] Page, E.H. and Smith, R. “Introduction to Military Training

Simulation: A Guide for Discrete Event Simulationists.” In
Proceedings of the 1998 Winter Simulation Conference, D.
Medeiros, E. Watson, J. Carson, and M. Manivannan (eds.),
pp 53-60, SCS, Washington, 1998.

[2] Straßburger, S. “On the HLA-based Coupling of Simulation
Tools.” In Proceedings of the 1999 European Simulation Multi-
conference, H. Szczerbicka (ed.), Vol. 1, pp 45-51, SCS, War-
saw, Poland, 1999.

[3] Straßburger, S., Schulze, T., Klein, U., Henriksen, J.O. “Inter-
net-based Simulation using Off-the-Shelf Simulation Tools
and HLA.” In Proceedings of the 1998 Winter Simulation Con-
ference, D. Medeiros, E. Watson, J. Carson, and M. Manivan-
nan (eds.), pp 1669-1676, SCS, Washington, 1998.

[4] Henriksen, J.O. “An Introduction to SLX .” In Proceedings of
the 1997 Winter Simulation Conference, S. Andradóttir, K.
Healy, D. Withers, and B. Nelson (eds.), pp 559-566, SCS,
Atlanta, 1997.

[5] Cox, A., Wood, D.D., Petty, M.D. and Juge, P.K.A. “Integrat-
ing DIS and SIMNET into HLA with a Gateway.” In Defense
Modeling and Simulation Office (DMSO): Proceedings of the 15th
DIS Workshop, Orlando, FL, Sept. 1996.

[6] Wood, D.D., Petty, M.D., Cox, A., Hofer, R. and Harkrider, S.
“HLA Gateway Status and Future Plans.” In Simulation In-
teroperability Standards Organization (SISO): Proceedings of the
Simulation Interoperability Workshop Spring 1997, March 3-7,
1997, Orlando, FL. Paper 97S-SIW-125, SISO, 1997.

[7] Fujimoto, R. “Zero Lookahead and Repeatability in the High
Level Architecture.” In Simulation Interoperability Standards
Organization (SISO): Proceedings of the Simulation Interoperabil-
ity Workshop Spring 1997, March 3-7, Orlando, FL, SISO, 1997.

[8] Lantzsch, G. “HLA Interface for Simplex III.” Master’s Thesis,
Technical University Dresden (German language).

[9] Klein, U., Schulze, T., Straßburger, S. and Menzler, H.-P.
“Traffic Simulation Based on the High Level Architecture.”
In Proceedings of the 1998 Winter Simulation Conference, D.
Medeiros, E. Watson, J. Carson, and M. Manivannan (eds.),
pp 1095-1103. SCS, Washington, 1998.

[10] Klein, U., Schulze, T., Straßburger, S. and Menzler, H.-P. “Dis-
tributed Traffic Simulation Based on the High Level Archi-
tecture.” In Proceedings of the Simulation Interoperability Work-
shop, Orlando, FL, 1998.

[11] Schulze, T., Straßburger, S., Klein, U. “On-line Data Process-
ing in Simulation Models: New Approaches and Possibilities
Through HLA.” In Proceedings of the 1999 Winter Simulation
Conference. In press.

[12] Lorenz, P. and Ritter, K.C. “Skopeo: Platform-Independent
System Animation for the W3.” In Proceedings of the Simula-
tion and Animation Conference, O. Deussen and P. Lorenz
(eds.), Magdeburg, March 6-7, 1997. SCS European Publish-
ing House, pp 12-23, 1997.

[13] Henriksen, J.O. “Windows-Based Animation with Proof™.”
In Proceedings of the 1998 Winter Simulation Conference, D.
Medeiros, E. Watson, J. Carson, and M. Manivannan (eds.),
pp 241-247, SCS, Washington.

Thomas Schulze is an Associate
Professor in the Department of
Computer Science at the Otto-von-
Guericke University in Magdeburg,
Germany. His research interests in-
clude modeling methodology, pub-
lic systems modeling, traffic simu-
lation, and distributed simulation
with HLA. He is an active member
in ASIM, a German simulation or-
ganization.

Steffen Straβburger holds a
Master’s degree in Computer Sci-
ence from the Otto-von-Guericke
University in Magdeburg, Germany.
He is currently working towards
his PhD at the Institute for Simula-
tion and Graphics at the same uni-
versity. His experience with inter-
networking and simulation includes
a one-year stay at the University of
Wisconsin, Stevens Point. His main
research interests lie in distributed
simulation and the High Level Ar-
chitecture.

Ulrich Klein is a Project Manager
at the Fraunhofer Institute for Fac-
tory Operation and Automation
IFF in Magdeburg, Germany. He
holds a Master’s degree in Indus-
trial Engineering from the Univer-
sity of Karlsruhe and has been in-
volved in Emergency Management
since 1992. He has two years of ex-
perience as Project Manager for
Command, Control and Communi-
cation Systems for Public Safety

and Security in Europe. His research topics include emer-
gency management, geographic information systems and
distributed simulation-based systems.

