
Different Forms of Interoperability for Harbor Models

Marco Schumann
Fraunhofer Institute for Factory Operation and Automation

Sandtorstrasse 22
39106 Magdeburg, Germany

+49-391-4090-110, +49-391-4090-158
schuma@iff.fhg.de

Thomas Schulze, Steffen Straßburger
Department of Computer Science

 „Otto-von-Guericke“ University, Magdeburg
Universitätsplatz 2

39106 Magdeburg, Germany
+49-391-67-12017

tom@isg.cs.uni-magdeburg.de, strassbu@isg.cs.uni-magdeburg.de

KEYWORDS

HLA, Interoperability, SLX™, Web-based
Simulation.

ABSTRACT

This paper discusses the current trends of
interoperability and its impact on simulation.
The special focus is on the application of
interoperability techniques within the area of
maritime modeling and simulation. The paper
uses a traditional harbor model developed for
the Riga Baltic Container terminal to
demonstrate the potential of different kinds of
interoperability. Technologies which are
discussed include different web-based
techniques for interoperability and the High
Level Architecture for Modeling and
Simulation (HLA), as the latest standard in the
area of distributed simulation. The simulation
system of choice which serves as the
demonstration system is SLX, since SLX offers
excellent extensibility mechanisms and is best
suited for demonstrating different kinds of
interoperability.

1 INTRODUCTION
Harbors are traditional objects for simulation
studies. The complexity of the harbor world
can not be mapped into analytical models.
Simulation models are used for solving
different problems. (See Bruzzone, Giribone

and Revetria 1999 and Merkurjev,
Kampermann, Tolujev 99). Permanent changes
in the harbor reality lead to new requirements
for harbor models. One of the new challenges
is the increasing requirement for more
interoperability of the harbor models. Theses
models have to operate in new environments
strongly influenced by new information
technologies. Harbor simulation models will
overcome their classical stand-alone behavior,
they will operate together with other
applications.

The paper describes in the following parts
different kinds of application-independent
interoperability levels. Implementations of the
interoperability levels for harbor models are
described in section 3 and 4. The section 2
points out the classical basic harbor model.

Interoperability is the ability of a system or a
product to work with other systems or products
without special effort on the part of the
customer. Interoperability becomes a quality of
increasing importance for modern information
technology products.

We adopt this general definition of
interoperability for simulation models. The
interoperability of a simulation model is the
ability to provide services to, and accept
services from other simulation models or
simulation model related components with the
goal to operate effectively together.
Interoperability requires the ability both to

exchange data and to interpret it. This includes
effective data sharing and consistent data
interpretation. Three different levels of
interoperability for simulation models can be
distinguished:

Level 0: No interoperability between the
simulation models and any other systems
exists, i.e., there is no need for data exchange.

Level 1: The simulation model is capable of
interoperating with distributed information
sources during the initialization phase and
during the shutdown phase of a simulation
run.. This could also be described as off-line
interoperability, i.e., the interoperability does
not occur at the runtime of the system. In a
simulation environment this could apply to
simulation models which are connected with
additional components via the WWW. The
communication takes place during the startup
phase (e.g., by initializing the model with input
data) and during the shutdown phase (e.g., by
sending the results back to the client).

Level 2: This is the highest level of
interoperability. Systems are connected on-line
and communicate with each other at runtime.
In relation with simulation models one can
distinguish between two sub-categories: In the
internal case the simulation model can be
divided into several simulation components
communicating during the simulation run. In
the external case simulation model components
communicate with other (external) components
like visualization and training devices during
the simulation run.

2 Traditional Harbor Models
Within the EU-funded INCO-COPERNICUS
project DAMAC-HP (1998-2000), a set of
generic models for the application in the Riga
Baltic Container Terminal (BCT) has been
constructed.

These models have been implemented in
different languages, e.g., Arena, GPSS/H, and
SLX. Initially all of the models were developed
as traditional models, i.e., they have a classical
monolithic character.

With the deployment of SLX it became
possible to investigate the application of
advanced technologies for interoperability in
the maritime environment.

SLX itself is a discrete event simulation tool
for the Windows 95/98/NT/2000 operating
systems developed by the Wolverine Software
Corporation (Henriksen 1995, 1996, 1997a).
SLX is a classical simulation language-oriented
stand-alone tool that includes a programming
language with a C-like syntax. SLX is the
designated successor of the well-known
GPSS/H.

Since SLX offers excellent extensibility
mechanisms, it was well suited for experiments
with different interoperability techniques (see
sections 2 and 3).

This section gives a brief overview about the
SLX simulation model of the Riga BCT and its
development.

Porting GPSS/H Models to SLX
The SLX simulation model discussed here is
based on an existing implementation of the
model in GPSS/H.

When transferring an existing GPSS/H
simulation model to SLX, the user has two
general options for doing this:

a) The user can use the SLX-hosted
implementation of GPSS, contained in the
H5/H6.SLX modules. This implementation
was built to support the adoption process of
old GPSS users converting to SLX. At the
same time it demonstrates one of the main
strengths of SLX, its extensibility. Within
the SLX language the users can define their
own statements and thus built simulation
packages onto of the actual SLX language.
This has been done with the GPSS
language. The SLX-hosted implementation
of GPSS supports the GPSS language to a
large extend, but not completely. Some re-
writing of GPSS models may be necessary
to adopt them to make them run under
SLX.

b) The other choice is to completely re-
develop an existing GPSS/H model with
the native SLX constructs and approaches.

While at the first view this seems to be the
more time-consuming approach it also has
several advantages. In a lot of cases,
techniques used for producing good
GPSS/H models result in bad SLX models,
if models are transliterated from GPSS/H to
SLX, or if new SLX models are developed
imitating GPSS/H style. Probably the
biggest offending technique is using integer
indices to access entities. In GPSS/H, this
is the only way to access a facility in the
single collection of facilities available at
run-time.

In SLX, one can have arrays of facilities,
facilities as sub-objects, dynamically
created facilities, etc. Failure to take
advantage of these improved ways of
organizing data and objects is resulting in
badly readable SLX models.

Implementation of the SLX Model for the
Baltic Container Terminal
In the development of an SLX based
simulation model of the Riga Baltic Container
Terminal (BCT) it also had to be decided
which strategy was to be used. A GPSS/H
model of the harbor was existing (at least in
major parts). In first experiments it was tried to
use approach a) described above. Soon the
disadvantages of this approach were discovered
and the development efforts were redirected to
use approach b). One extra-advantage of this
approach is that native SLX models can easily
fit into the HLA world view of objects and
interactions. This tremendously facilitates the
interoperability aspects, e.g., if the BCT model
should be coupled with other components or
programs.

The implementation of the Riga BCT in SLX
has been structured in the following way: For
all moving entities of the model, active SLX
object classes have been defined. SLX
distinguishes between active and passive
objects. While passive objects merely function
as complex data types, i.e., a collection of
attributes without own functionality, active
objects also define the properties, i.e., the
behavior, of a class.

The active objects contained in the model
include the following classes:

- cl_Ship models the arriving ships, their
unloading and loading processes, and their
departure.

- cl_Trailer models the trailers moving
through the container yard

- cl_Crane models the different cranes
located in the harbor. Different sub-types
exist for instance for the quay cranes and
the railway cranes.

- cl_Train models arriving and departing
trains and their loading and unloading.

- cl_Truck models truck sets which arrive
and deliver/receive containers.

The following figures depict the relationships
between the most important classes of the
model and also shows their attributes and
properties.

cl_Ship
- Containers for import and export
- Number of Q-Cranes -> Type: big or small
- Arrival time, pause times

cl_Crane
- Operation Time (Distribution)
- Position in harbor
- Assigned ship

cl_Trailer
- Distribution of moving speed
 (full/empty)
- Assigned ship and crane
- Position, Status

uses one
or two

uses a predefined
number of

loads and
unloads

Figure 1a: Relationship of Important Classes of the SLX
Model and their attributes

cl_Ship
- Enter harbor, when space available
- Assign Q-cranes
- Pause1, generate trailers for import, import by Q-crane(s)
- Pause2, generate trailers for export, export by Q-crane(s)
- Pause3, leave harbor

cl_Crane
- Wait for available trailers
- Activate trailer
- Perform import (or export)
- Send trailer into yard
- When done: Destroy trailers

cl_Trailer
- Waits for activation by crane
- load/unload container
- move into container yard
- load/unload container
- move back to the crane, wait

uses one
or two

uses a predefined
number of

loads and
unloads

Figure 1b: Relationship of Important Classes of the SLX
Model and their behavior

The management of resources in the SLX
model is performed using sets. Sets are a
common way of modeling the management of
resources in the SLX language. In the model,
all quay cranes are, for instance, part of the set

“AllCranes” which marks its members as
available. When cranes are assigned to a ship
they are removed from this set and place into
the ship’s set “MyCranes”. Thus they are
marked as currently busy serving a certain ship.
A similar strategy is used for trailers. Trailers
are initially created for a certain ship, place
into the ship’s set of available trailers, and
removed by a crane once the crane is ready to
load/unload the trailer.

Visualization Options for the BCT Model
It was chosen to use Proof Animation for
providing an visualization of the SLX model.

Proof Animation is a general-purpose animator
designed for use with the widest possible
variety of simulation tools. Every Proof
animation requires two ASCII input streams,
(1) a layout stream, describing static
characteristics of an animation, e.g., the
background drawing over which objects move,
and (2) a trace stream, which is a time-ordered
sequence of commands which create, destroy,
move, and otherwise change objects displayed
on the layout, portraying events in a
simulation. Both of these streams are free-
format ASCII text, with well documented
(“open”) architectures which can be generated
easily in a variety of ways (Henriksen 1997b,
1998b).

Proof can be used in post-processing mode or
directly driven by another program. When
Proof is directly coupled to simulation
software, input streams are transmitted to Proof
one line at a time via subroutine calls. Proof
can be directly driven by any program which is
capable of constructing C-compatible Dynamic
Link Library (DLL) calls; i.e., the directly
driven version of Proof is packaged as a
Windows DLL.

The simulator SLX is tightly coupled with the
DLL version of Proof and could thus be easily
used for performing on-line visualization of the
BCT model (Henriksen 1998a). Since one of
the target scenarios which was to be achieved
within our project has SLX run in a distributed
environment on a web-server, the traditional
post-processed animation option was chosen as
the default visualization. Optionally it is

possible to switch to an local on-line
animation, if SLX and Proof is available
locally. This can be done easily with minor
modifications of the model, i.e., by exchanging
the default include file “proof3.slx” (for post-
processed animation) to “p4dll.slx” (for on-line
visualization).

The implementation of the visualization of the
SLX-BCT model makes extensive use of the
path concept of Proof. All important points in
the layout, e.g., position of cranes, loading and
unloading stations for ships and trains,
positions of container yards, etc. are assigned a
unique number in the layout. Between each of
the points paths following a certain naming
convention exist. A path connecting position
17 (the left most quay crane in Figure 2) and a
position 3 (one of the container yards) would
be named “pa1703”. In the opposite direction,
a path named “pa0317” exists. All movements
of vehicles, e.g., trailers and trucks, takes place
on these paths.

The SLX model dynamically constructs the
paths which a trailer uses. It analyzes the input
files for the distances between certain points
and adjusts the speed of trailers accordingly.

Figure 2 : Screenshot obtained from the Proof Animation
of the Riga BCT

3 Web-based Harbor Models
A new simulation subarea has been titled web-
based simulation by Fishwick and Hill
(Fishwick and Hill 1999). This new area
combines general web-based technologies with
simulation. Page (Page 1998) identifies five

different areas of focus: simulation as
hypermedia, simulation research methodology,
web-based access to simulation programs,
distributed modeling and simulation,
simulation of the WWW.

We define web-based simulation as an instance
of interoperability level 1. The simulation
model does not interact with other components
during the simulation run.

Our focus in this section will be on
architectures for web-based access to
simulation programs. General application
independent architectures will be explained in
the first part. The second part describes
possible applications in the world of harbor
models.

3.1 General architecture forms
The client-server structure is the basic
architecture of the web. Architectures for web-
based simulation are derived from this basic
structure. The simulation user is the client
which interacts with different forms of servers.

• Remote execution of existing simulation
models (form A)

The client invokes a web browser, opens a
special HTML-document, specifies values for
predefined input parameters of the simulation
model, submits this document to the server and
starts the simulation machine via the common
gateway interface (CGI) or similar mechanisms
on the server. Output data will be send back
from the server to the client after the
termination of the simulation. In these cases
the servers operate as an application server.

This form offers a small model flexibility for
the user. Time consuming simulation runs can
be executed on high-performance simulation
server. The user is exempted from model
maintenance.

• Local execution of a downloaded simulation
models (form B)

In this case the server operates as an applet
server. The complete simulation model is
downloaded to the client site and will be
executed locally. There are special

requirements for the simulation software used
in this scenario. The simulation program must
be executable in the heterogeneous computer
world in the web. Java applet based simulation
programs are possible solutions.

• Execution of a modifiable downloaded
simulation model (form C)

This case can be considered as an extension of
both previous case. The server has to operate as
a model repository or a file server that offers
the source code of the simulation model. The
client can modify the source code. The
execution of the model can be done in two
ways. If the appropriate simulation system for
processing the source code of the model is
available at the clients site, the execution can
be done locally. In the other case an additional
(application) server has to be used for model
execution. This can be an extension to form A,
in which not only the input data, but also the
source code of the model itself is sent to the
server.

• Download of input data (form D)

The client owns the simulation model and the
server operates as a data server. The server
offers special input data for the simulation run.
This can be for example stored data about the
state of the real system or data about weather
forecasts.

3.2 Application-oriented architectures for
harbor models
Based on the general architecture forms
described above, we introduce three possible
application oriented architectures for harbor
models.

• Simulation–based information system

The harbor management offers an information
system where customers can get answers to
questions. Not all queries can be answered on
the base of analytical methods. For theses kinds
of queries a simulation based information
system will be used. Core of such a system is a
simulation model of the internal harbor
processes. Depending on the forecast horizon
the simulation model will be initialized with

the current or an predicted harbor state. The
information system offers a special interface
for definition of the query. The simulation
model is encapsulated, it is hidden from the
customer. That means the model can not be
changed or modified by customers.

This application oriented architecture is based
on the described forms A and B. No
differences exist between both forms related to
the functionality for a simulation user. He
specifies the input data for the simulation run,
and after termination of the simulation he will
get back the answer. It is not important for the
results where the simulation process is located.

Figure 3 shows a possible scenario. A ship
which is on the way to the harbor wants to get
time-dependent information about its load and
unload processes. This query will be created
inside a web browser on the ship and submitted
via wireless communication to the harbor
information system. The information system
initializes the simulation model with the
concrete query parameters and the needed
information of the future harbor state. The
results of the simulation run will be prepared.
The ship can use the answer data for its own
scheduling tasks.

Figure 3: Simulation-based information system

Similar scenarios could be developed for other
carriers like trains and trucks.

• Internal model adaptation

An increasing number of simulation models
will be used in the day-to-day operation of
harbor facilities. These models help
management to evaluate the system capacity
for new orders, for changes in the operator
team and for changes in operating conditions.

They support the management of harbors for
analysis of throughput and detection of
bottlenecks. Management can evaluate
operating decisions relative to the performance
of the system. The needed models have to be
adapted to the new conditions. Often the
modification of the model can not be done by
changes of the input parameter values. It is
necessary to alter the model on the source code
level.

Server with
Model Depository

Application
Engineer Application

Engineer

Application
Engineer

Server with
Model Depository

Application
Engineer
Application
Engineer Application

Engineer
Application
Engineer

Application
Engineer
Application
Engineer

Figure 4: Model depository based model adaptation

If the harbor model is well structured and it
consists of exchangeable modules this job can
be done by non-simulation experts (See Figure
4). The simulation user chooses different
modules from a model depository for building
the adapted model. The model depository is
located on a server and will be maintained by
simulation experts. Different internal users can
access the depository via the harbor specific
intranet.

• Preparing external data

There are situations where the simulation
model has to be supplied with information
stored on an external server. A typical example
in the harbor area is the use of weather and tide
forecasts from external servers. The simulation
models operate as a client which requires
information from a server. In the case of
weather forecasts the received information has
to be prepared for being used as values for
input parameters. With increasing forecasting
horizon the predicted values will be more
blurred. The use of preprocessors is necessary
to transform the fuzzy values into acceptable
values for the simulation model.

4 HLA-based Harbor Models
Whereas the approach of web-based simulation
is suitable to transfer data during the
initialization and shutdown phase of a
simulation, it does not provide mechanisms of
synchronizing distributed simulation modules
at run-time.

Exchanging data at run-time is a quality that
characterizes the simulation models belonging
into the interoperability level 2. Several stan-
dards for distributed simulation, such as DIS or
ALSP, have been developed in the past. One
of the most recent and sophisticated standards
is the High Level Architecture (HLA). This
chapter presents ideas how harbor models can
benefit from an HLA-based implementation of
simulation models.

The creation of HLA-based simulation models
can be significantly accelerated by using an
HLA-compliant simulator instead of using the
DoD provided C++ libraries. Approaches for
the integration of existing simulation tools into
the HLA are presented in (Straßburger et. al
1998).

As pointed out in the introduction chapter, one
can distinguish between internal and external
interoperability.

4.1 Internal interoperability
In case the simulation model is divided into
several sub-models (federates) that typically
run on different machines, we speak of internal
interoperability. Splitting a complex model
into a set of sub-models provides the flexibility
of configuring the simulation for different
purposes and levels of detail.

Regarding the application of a harbor
simulation, a distinction into the following
modules might be useful:

• Simulation of railroad station

The railroad and motor vehicle transportation
business might be run by separate companies
that maintain their own data. For the purpose
of simulation, the railroad transportation
company might have implemented a simulation
model of their business that can be included in

a logistical simulation. The advantage is that
when the simulation is executed, it can always
access the current railroad station data.

A relevant simulation problem could be the
question if it is possible for the railroad station
to handle a certain amount of cargo. The
amount of cargo is communicated through the
HLA interface by other federates. In response,
the railroad station federate can report its
current state to other federates.

• Simulation of the motor carrier

The same applies to the simulation of the
motor carrier. According to the current order
load of the motor carrier, a computer
simulation could determine if the carrier is able
to process a given amount of cargo.

• Simulation of fork lifts

Another federate could simulate the forklifts
used to move the containers. This federate
could rely on current maintenance data from
the service shop in order to determine the
number of available fork lifts and their current
status.

• Simulation of cargo ships

A last federate might be established to simulate
incoming and outgoing ships with their
characteristic data.

4.2 External interoperability
In addition to several simulation federates, an
HLA federation can also include non-
simulation federates that do not directly
contribute to the simulation. This is called
external interoperability. The following
section describes how non-simulation com-
ponents can be utilized to further enhance the
functionality of the system.

• Visualization federate(s)

Visualization federates can be used to observe
an on-line simulation of the harbor model.
Using the HLA enables different departments
of the harbor administration to have different
views on the specific data of their interest.

A typical problem of complex systems of this
kind is that dynamic data is only gathered at
certain locations in the system. For instance,
the position of a specific container is not
continuously tracked but more likely only
when the container is unloaded from the ship
and the next time when it is placed in the
container storing area.

A simulation model can be employed to
interpolate between those system states and the
visualization federated can be used accordingly
to enhanced the transparence of the system.

This approach has been applied in a simulation
of the streetcar traffic described in (Schulze et.
al 1999).

• Real-time operator training federate(s)

Equipped with a more sophisticated
visualization, such as a 3D Virtual Reality
World, the forklift simulation federate can be
used to train operators of forklifts using
authentic data from the logistical simulation.

• Decision support federate(s)

The staff involved in logistical decision-
making can also be simulated as an HLA
federate. Instead of a programmed algorithm, a
human decides manually between given
alternatives (e.g. shipping routes), and can
evaluate the quality of his/her decision by
simulating the different consequences. For this
purpose, an abstract 2D visualization from a
bird’s eye view might be sufficient, but a much
higher simulation speed than real-time is
desired. This can be accomplished by simply
changing the visualization component and not
including a real-time synchronization federate.

5 Conclusions and Outlook
The increase of the interoperability of
simulation models is one of the trends in the
future of modeling technology. The need for
this fact is based on the overcome of stand-
alone solutions. Simulation models have to be
integrated into different forms of distributed
information technologies. Web-based
simulation and HLA offer possibilities to insert
and extend the interoperability of simulation

models. First steps have been made in the area
of harbor simulation and results are shown in
this paper. The success of theses steps
circumstantiates the truth of this way.

6 References
Bruzzone, A., P. Giribone and R.

Revetria.1999. Operative Requirements
and Advances for the new Generation
Simulators in Multimodal Container
Terminals. In Proceedings of the 1999
Winter Simulation Conference, eds. P. A.
Farrington, H. B. Nembhard, D. T.
Sturrock, and G. W. Evans, pp. 1243-
1252. SCS, Phoenix.

Fishwick, P. A. and D. R.C. Hill. 1999.
Introduction to the Special Issue on Web-
Based Simulation. SIMULATION, volume
73: Number1: July 1999. page 4

Henriksen, J.O. 1995. An Introduction to SLX.
In Proceedings of the 1995 Winter
Simulation Conference, eds. C.
Alexopoulos, K. Kang, W.R. Lilegdon, D.
Goldsman, pp. 502-507.

Henriksen, J.O. 1996. An Introduction to SLX.
In Proceedings of the 1996 Winter
Simulation Conference, eds. J.M. Charnes,
D.M. Morrice, D.T. Brunner, J.J. Swain,
pp. 468-475.

Henriksen, J.O. 1997a. An Introduction to SLX.
In Proceedings of the 1997 Winter
Simulation Conference, eds. S.
Andradóttir, K.J. Healy, D.H. Withers,
B.L. Nelson, pp. 559-566.

Henriksen, J.O. 1997b. SLX and Proof
Animation. In Deussen, O. and P. Lorenz
(Ed.), Proceedings of the Simulation and
Animation Conference Magdeburg, March
6.-7., 1997. SCS European Publishing
House San Diego / Erlangen / Ghent /
Budapest 1997, pp. 287-294.

Henriksen, J.O. 1998a. Windows-Based
Animation with Proof. In Proceedings of
the 1998 Winter Simulation Conference,
eds. Medeiros, D., E. Watson, J. Carson,

and M. Manivannan, pp. 241-247. SCS,
Washington.

Henriksen, J.O. 1998b. General-Purpose
Concurrent and Prost-Processed
Animation with Proof™. In Proceedings of
the 1999 Winter Simulation Conference,
eds. P. A. Farrington, H. B. Nembhard, D.
T. Sturrock, and G. W. Evans, pp. 176-
181. SCS, Phoenix.

Page, E. 1998. The Rise of Web-Based
Simulation: Implications for the High
Level Architecture. In Proceedings of the
1998 Winter Simulation Conference, eds.
D.J. Medeiros, E.F. Watson, J.S. Carson
and M.S. Manivannan, pp.1663-1668.
SCS, Washington.

Merkuryev, Y., F. Kapermann, J. Tolujew, G.
Merkuryeva, A. Smits and I. Demyanov.
1999. Simulation of container processing
at the Baltic Container Terminal. In The
International Workshop on Harbor,
Maritime & Industrial Logistics Modelling
and Simulation, eds. A. G. Bruzzone, Y.
A. Merkuriev, and R. Mosca. SCS
International, pp.9-14

Schulze, T., S. Straßburger, U. Klein. 1999.
Migration of HLA into Civil Domains:
Solutions and Prototypes for
Transportation Applications. In:
SIMULATION, Vol. 73, No. 5, pp. 296-
303, November 1999.

Straßburger, S., T. Schulze, U. Klein, J.O.
Henriksen. 1998. Internet-based
Simulation using off-the-shelf Simulation
Tools and HLA. In Proceedings of the
1998 Winter Simulation Conference, eds.
Medeiros, D.J. and E. Watson, pp. 1669-
1676. SCS, Washington, D.C.

7 Author Biographies
THOMAS SCHULZE is an Associate
Professor in the Department for Computer
Sciences at the Otto-von-Guericke-University
in Magdeburg. His research interests include
modeling methodology, public systems
modeling, traffic simulation, and distributed
simulation with HLA. He is an active member
in the ASIM, an organization for computer
simulation in Gemany.

MARCO SCHUMANN is an employee at the
Fraunhofer Institute in Magdeburg. He holds a
Master’s degree in Computer Science from the
Otto-von-Guericke University in Magdeburg.
His experiences in developing simulations and
applications for the Internet include a one-year
stay at the University of Wisconsin – Stevens
Point. His main research interest lies in
application of simulation methods in the field
of factory planning and optimization.

STEFFEN STRASSBURGER holds a
Master’s degree in Computer Science from the
Otto-von-Guericke University in Magdeburg,
Germany. He is currently working towards his
PhD at the Institute for Simulation and
Graphics at the same university. His experience
with inter-networking and simulation includes
a one-year stay at the University of Wisconsin,
Stevens Point and a stay at the Georgia
Institute of Technology, Atlanta. His main
research interests lie in distributed simulation
and the High Level Architecture.

	INTRODUCTION
	Traditional Harbor Models
	Porting GPSS/H Models to SLX
	Implementation of the SLX Model for the Baltic Container Terminal
	Visualization Options for the BCT Model

	Web-based Harbor Models
	General architecture forms
	Application-oriented architectures for harbor models

	HLA-based Harbor Models
	Internal interoperability
	External interoperability

	Conclusions and Outlook
	References
	Author Biographies

