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ABSTRACT 
 
This paper discusses the current trends of 
interoperability and its impact on simulation. 
The special focus is on the application of 
interoperability techniques within the area of 
maritime modeling and simulation. The paper 
uses a traditional harbor model developed for 
the Riga Baltic Container terminal to 
demonstrate the potential of different kinds of 
interoperability. Technologies which are 
discussed include different web-based 
techniques for interoperability and the High 
Level Architecture for Modeling and 
Simulation (HLA), as the latest standard in the 
area of distributed simulation. The simulation 
system of choice which serves as the 
demonstration system is SLX, since SLX offers 
excellent extensibility mechanisms and is best 
suited for demonstrating different kinds of 
interoperability. 

1 INTRODUCTION 
Harbors are traditional objects for simulation 
studies. The complexity of the harbor world 
can not be mapped into analytical models. 
Simulation models are used for solving 
different problems. (See Bruzzone, Giribone 

and Revetria 1999 and Merkurjev, 
Kampermann, Tolujev 99). Permanent changes 
in the harbor reality lead to new requirements 
for harbor models. One of the new challenges 
is the increasing requirement for more 
interoperability of the harbor models. Theses 
models have to operate in new environments 
strongly influenced by new information 
technologies. Harbor simulation models will 
overcome their classical stand-alone behavior, 
they will operate together with other 
applications.  

The paper describes in the following parts 
different kinds of application-independent 
interoperability levels. Implementations of the 
interoperability levels for harbor models are 
described in section 3 and 4. The section 2 
points out the classical basic harbor model. 

Interoperability is the ability of a system or a 
product to work with other systems or products 
without special effort on the part of the 
customer. Interoperability becomes a quality of 
increasing importance for modern information 
technology products. 

We adopt this general definition of 
interoperability for simulation models. The 
interoperability of a simulation model is the 
ability to provide services to, and accept 
services from other simulation models or 
simulation model related components with the 
goal to operate effectively together. 
Interoperability requires the ability both to 



exchange data and to interpret it. This includes 
effective data sharing and consistent data 
interpretation. Three different levels of 
interoperability for simulation models can be 
distinguished: 

Level 0: No interoperability between the 
simulation models and any other systems 
exists, i.e., there is no need for data exchange. 

Level 1: The simulation model is capable of 
interoperating with distributed information 
sources during the initialization phase and 
during the shutdown phase of a simulation 
run.. This could also be described as off-line 
interoperability, i.e., the interoperability does 
not occur at the runtime of the system. In a 
simulation environment this could apply to 
simulation models which are connected with 
additional components via the WWW. The 
communication takes place during the startup 
phase (e.g., by initializing the model with input 
data) and during the shutdown phase (e.g., by 
sending the results back to the client). 

Level 2: This is the highest level of 
interoperability. Systems are connected on-line 
and communicate with each other at runtime. 
In relation with simulation models one can 
distinguish between two sub-categories: In the 
internal case the simulation model can be 
divided into several simulation components 
communicating during the simulation run. In 
the external case simulation model components 
communicate with other (external) components 
like visualization and training devices during 
the simulation run. 

2 Traditional Harbor Models 
Within the EU-funded INCO-COPERNICUS 
project DAMAC-HP (1998-2000), a set of 
generic models for the application in the Riga 
Baltic Container Terminal (BCT) has been 
constructed. 

These models have been implemented in 
different languages, e.g., Arena, GPSS/H, and 
SLX. Initially all of the models were developed 
as traditional models, i.e., they have a classical 
monolithic character.  

With the deployment of SLX it became 
possible to investigate the application of 
advanced technologies for interoperability in 
the maritime environment.  

SLX itself is a discrete event simulation tool 
for the Windows 95/98/NT/2000 operating 
systems developed by the Wolverine Software 
Corporation (Henriksen 1995, 1996, 1997a). 
SLX is a classical simulation language-oriented 
stand-alone tool that includes a programming 
language with a C-like syntax. SLX is the 
designated successor of the well-known 
GPSS/H.  

Since SLX offers excellent extensibility 
mechanisms, it was well suited for experiments 
with different interoperability techniques (see 
sections 2 and 3). 

This section gives a brief overview about the 
SLX simulation model of the Riga BCT and its 
development. 

Porting GPSS/H Models to SLX 
The SLX simulation model discussed here is 
based on an existing implementation of the 
model in GPSS/H. 

When transferring an existing GPSS/H 
simulation model to SLX, the user has two 
general options for doing this: 

a) The user can use the SLX-hosted 
implementation of GPSS, contained in the 
H5/H6.SLX modules. This implementation 
was built to support the adoption process of 
old GPSS users converting to SLX. At the 
same time it demonstrates one of the main 
strengths of SLX, its extensibility. Within 
the SLX language the users can define their 
own statements and thus built simulation 
packages onto of the actual SLX language. 
This has been done with the GPSS 
language. The SLX-hosted implementation 
of GPSS supports the GPSS language to a 
large extend, but not completely. Some re-
writing of GPSS models may be necessary 
to adopt them to make them run under 
SLX.  

b) The other choice is to completely re-
develop an existing GPSS/H model with 
the native SLX constructs and approaches. 



While at the first view this seems to be the 
more time-consuming approach it also has 
several advantages. In a lot of cases, 
techniques used for producing good 
GPSS/H models result in bad SLX models, 
if models are transliterated from GPSS/H to 
SLX, or if new SLX models are developed 
imitating GPSS/H style. Probably the 
biggest offending technique is using integer 
indices to access entities. In GPSS/H, this 
is the only way to access a facility in the 
single collection of facilities available at 
run-time. 

In SLX, one can have arrays of facilities, 
facilities as sub-objects, dynamically 
created facilities, etc. Failure to take 
advantage of these improved ways of 
organizing data and objects is resulting in 
badly readable SLX models. 

Implementation of the SLX Model for the 
Baltic Container Terminal 
In the development of an SLX based 
simulation model of the Riga Baltic Container 
Terminal (BCT) it also had to be decided 
which strategy was to be used. A GPSS/H 
model of the harbor was existing (at least in 
major parts). In first experiments it was tried to 
use approach a) described above. Soon the 
disadvantages of this approach were discovered 
and the development efforts were redirected to 
use approach b). One extra-advantage of this 
approach is that native SLX models can easily 
fit into the HLA world view of objects and 
interactions. This tremendously facilitates the 
interoperability aspects, e.g., if the BCT model 
should be coupled with other components or 
programs. 

The implementation of the Riga BCT in SLX 
has been structured in the following way: For 
all moving entities of the model, active SLX 
object classes have been defined. SLX 
distinguishes between active and passive 
objects. While passive objects merely function 
as complex data types, i.e., a collection of 
attributes without own functionality, active 
objects also define the properties, i.e., the 
behavior, of  a class. 

The active objects contained in the model 
include the following classes: 

- cl_Ship models the arriving ships, their 
unloading and loading processes, and their 
departure. 

- cl_Trailer models the trailers moving 
through the container yard 

- cl_Crane models the different cranes 
located in the harbor. Different sub-types 
exist for instance for the quay cranes and 
the railway cranes. 

- cl_Train models arriving and departing 
trains and their loading and unloading. 

- cl_Truck models truck sets which arrive 
and deliver/receive containers. 

The following figures depict the relationships 
between the most important classes of the 
model and also shows their attributes and 
properties. 

cl_Ship
- Containers for import and export
- Number of Q-Cranes -> Type: big or small
- Arrival time, pause times

cl_Crane
- Operation Time (Distribution)
- Position in harbor
- Assigned ship

cl_Trailer
- Distribution of moving speed
  (full/empty)
- Assigned ship and crane
- Position, Status

uses one 
or two

uses a predefined
number of

loads and
unloads

 

Figure 1a: Relationship of Important Classes of the SLX 
Model and their attributes 

cl_Ship
- Enter harbor, when space available
- Assign Q-cranes
- Pause1, generate trailers for import, import by Q-crane(s)
- Pause2, generate trailers for export, export by Q-crane(s)
- Pause3, leave harbor

cl_Crane
- Wait for available trailers
- Activate trailer
- Perform import (or export)
- Send trailer into yard
- When done: Destroy trailers 

cl_Trailer
- Waits for activation by crane
- load/unload container
- move into container yard
- load/unload container
- move back to the crane, wait

uses one 
or two

uses a predefined
number of

loads and
unloads

 

Figure 1b: Relationship of Important Classes of the SLX 
Model and their behavior 

The management of resources in the SLX 
model is performed using sets. Sets are a 
common way of modeling the management of 
resources in the SLX language. In the model, 
all quay cranes are, for instance, part of the set 



“AllCranes” which marks its members as 
available. When cranes are assigned to a ship 
they are removed from this set and place into 
the ship’s set “MyCranes”. Thus they are 
marked as currently busy serving a certain ship. 
A similar strategy is used for trailers. Trailers 
are initially created for a certain ship, place 
into the ship’s set of available trailers, and 
removed by a crane once the crane is ready to 
load/unload the trailer. 

Visualization Options for the BCT Model 
It was chosen to use Proof Animation for 
providing an visualization of the SLX model. 

Proof Animation is a general-purpose animator 
designed for use with the widest possible 
variety of simulation tools. Every Proof 
animation requires two ASCII input streams, 
(1) a layout stream, describing static 
characteristics of an animation, e.g., the 
background drawing over which objects move, 
and (2) a trace stream, which is a time-ordered 
sequence of commands which create, destroy, 
move, and otherwise change objects displayed 
on the layout, portraying events in a 
simulation. Both of these streams are free-
format ASCII text, with well documented 
(“open”) architectures which can be generated 
easily in a variety of ways (Henriksen 1997b, 
1998b).  

Proof can be used in post-processing mode or 
directly driven by another program. When 
Proof is directly coupled to simulation 
software, input streams are transmitted to Proof 
one line at a time via subroutine calls. Proof 
can be directly driven by any program which is 
capable of constructing C-compatible Dynamic 
Link Library (DLL) calls; i.e., the directly 
driven version of Proof is packaged as a 
Windows DLL.  

The simulator SLX is tightly coupled with the 
DLL version of Proof and could thus be easily 
used for performing on-line visualization of the 
BCT model (Henriksen 1998a). Since one of 
the target scenarios which was to be achieved 
within our  project has SLX run in a distributed 
environment on a web-server, the traditional 
post-processed animation option was chosen as 
the default visualization. Optionally it is 

possible to switch to an local on-line 
animation, if SLX and Proof is available 
locally. This can be done easily with minor 
modifications of the model, i.e., by exchanging 
the default include file “proof3.slx” (for post-
processed animation) to “p4dll.slx” (for on-line 
visualization). 

The implementation of the visualization of the 
SLX-BCT model makes extensive use of the 
path concept of Proof. All important points in 
the layout, e.g., position of cranes, loading and 
unloading stations for ships and trains, 
positions of container yards, etc. are assigned a 
unique number in the layout. Between each of 
the points paths following a certain naming 
convention exist. A path connecting position 
17 (the left most quay crane in Figure 2) and a 
position 3 (one of the container yards) would 
be named “pa1703”. In the opposite direction, 
a path named “pa0317” exists. All movements 
of vehicles, e.g., trailers and trucks, takes place 
on these paths. 

The SLX model dynamically constructs the 
paths which a trailer uses. It analyzes the input 
files for the distances between certain points 
and adjusts the speed of trailers accordingly. 

 

Figure 2 : Screenshot obtained from the Proof Animation 
of the Riga BCT 

3 Web-based Harbor Models 
A new simulation subarea has been titled web-
based simulation by Fishwick and Hill 
(Fishwick and Hill 1999). This new area 
combines general web-based technologies with 
simulation. Page (Page 1998) identifies five 



different areas of focus: simulation as 
hypermedia, simulation research methodology, 
web-based access to simulation programs, 
distributed modeling and simulation, 
simulation of the WWW.  

We define web-based simulation as an instance 
of interoperability level 1. The simulation 
model  does not interact with other components 
during the simulation run.  

Our focus in this section will be on 
architectures for web-based access to 
simulation programs. General application 
independent architectures will be explained in 
the first part. The second part describes 
possible applications in the world of harbor 
models. 

3.1 General architecture forms 
The client-server structure is the basic 
architecture of the web. Architectures for web-
based simulation are derived from this basic 
structure. The simulation user is the client 
which interacts with different forms of servers. 

•  Remote execution of existing simulation 
models (form A) 

The client invokes a web browser, opens a 
special HTML-document, specifies values for 
predefined input parameters of the simulation 
model, submits this document to the server and 
starts the simulation machine via the common 
gateway interface (CGI) or similar mechanisms 
on the server. Output data will be send back 
from the server to the client after the 
termination of the simulation. In these cases 
the servers operate as an application server.  

This form offers a small model flexibility for 
the user. Time consuming simulation runs can 
be executed on high-performance simulation 
server. The user is exempted from model 
maintenance. 

•  Local execution of a downloaded simulation 
models (form B) 

In this case the server operates as an applet 
server. The complete simulation model is 
downloaded to the client site and will be 
executed locally. There are special 

requirements for the simulation software used 
in this scenario. The simulation program must 
be executable in the heterogeneous computer 
world in the web. Java applet based simulation 
programs are possible solutions.  

•  Execution of a modifiable downloaded 
simulation model (form C) 

This case can be considered as an extension of 
both previous case. The server has to operate as 
a model repository or a file server that offers 
the source code of the simulation model. The 
client can modify the source code. The 
execution of the model can be done in two 
ways. If the appropriate simulation system for 
processing the source code of the model is 
available at the clients site, the execution can 
be done locally. In the other case an additional 
(application) server has to be used for model 
execution. This can be an extension to form A, 
in which not only the input data, but also the 
source code of the model itself is sent to the 
server. 

•  Download of input data (form D) 

The client owns the simulation model and the 
server operates as a data server. The server 
offers special input data for the simulation run. 
This can be for example stored data about the 
state of the real system or data about weather 
forecasts.  

3.2 Application-oriented architectures for 
harbor models 
Based on the general architecture forms 
described above, we introduce three possible 
application oriented architectures for harbor 
models.  

•  Simulation–based information system 

The harbor management offers an information 
system where customers can get answers to 
questions. Not all queries can be answered on 
the base of analytical methods. For theses kinds 
of queries a simulation based information 
system will be used. Core of such a system is a 
simulation model of the internal harbor 
processes. Depending on the forecast horizon 
the simulation model will be initialized with 



the current or an predicted harbor state. The 
information system offers a special interface 
for definition of the query. The simulation 
model is encapsulated, it is hidden from the 
customer. That means the model can not be 
changed or modified by customers. 

This application oriented architecture is based 
on the described forms A and B. No 
differences exist between both forms related to 
the functionality for a simulation user. He 
specifies the input data for the simulation run, 
and after termination of the simulation he will 
get back the answer. It is not important for the 
results where the simulation process is located.  

Figure 3 shows a possible scenario. A ship 
which is on the way to the harbor wants to get 
time-dependent information about its load and 
unload processes. This query will be created 
inside a web browser on the ship and submitted 
via wireless communication to the harbor 
information system. The information system 
initializes the simulation model with the 
concrete query parameters and the needed 
information of the future harbor state. The 
results of the simulation run will be prepared. 
The ship can use the answer data for its own 
scheduling tasks. 

 

 

Figure 3: Simulation-based information system 

Similar scenarios could be developed for other 
carriers like trains and trucks. 

•  Internal model adaptation 

An increasing number of simulation models 
will be used in the day-to-day operation of 
harbor facilities. These models help 
management to evaluate the system capacity 
for new orders, for changes in the operator 
team and for changes in operating conditions. 

They support the management of harbors for 
analysis of throughput and detection of 
bottlenecks. Management can evaluate 
operating decisions relative to the performance 
of the system. The needed models have to be 
adapted to the new conditions. Often the 
modification of the model can not be done by 
changes of the input parameter values. It is 
necessary to alter the model on the source code 
level.  
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Figure 4: Model depository based model adaptation 

If the harbor model is well structured and it 
consists of exchangeable modules this job can 
be done by non-simulation experts (See Figure 
4). The simulation user chooses different 
modules from a model depository for building 
the adapted model. The model depository is 
located on a server and will be maintained by 
simulation experts. Different internal users can 
access the depository via the harbor specific 
intranet.  

•  Preparing external data 

There are situations where the simulation 
model has to be supplied with information 
stored on an external server. A typical example 
in the harbor area is the use of weather and tide 
forecasts from external servers. The simulation 
models operate as a client which requires 
information from a server. In the case of 
weather forecasts the received information has 
to be prepared for being used as values for 
input parameters. With increasing forecasting 
horizon the predicted values will be more 
blurred. The use of preprocessors is necessary 
to transform the fuzzy values into acceptable 
values for the simulation model. 



4 HLA-based Harbor Models 
Whereas the approach of web-based simulation 
is suitable to transfer data during the 
initialization and shutdown phase of a 
simulation, it does not provide mechanisms of 
synchronizing distributed simulation modules 
at run-time. 

Exchanging data at run-time is a quality that 
characterizes the simulation models belonging 
into the interoperability level 2.  Several stan-
dards for distributed simulation, such as DIS or 
ALSP, have been developed in the past.  One 
of the most recent and sophisticated standards 
is the High Level Architecture (HLA).  This 
chapter presents ideas how harbor models can 
benefit from an HLA-based implementation of 
simulation models. 

The creation of HLA-based simulation models 
can be significantly accelerated by using an 
HLA-compliant simulator instead of using the 
DoD provided C++ libraries.  Approaches for 
the integration of existing simulation tools into 
the HLA are presented in (Straßburger et. al 
1998).  

As pointed out in the introduction chapter, one 
can distinguish between internal and external 
interoperability. 

4.1 Internal interoperability 
In case the simulation model is divided into 
several sub-models (federates) that typically 
run on different machines, we speak of internal 
interoperability.  Splitting a complex model 
into a set of sub-models provides the flexibility 
of configuring the simulation for different 
purposes and levels of detail. 

Regarding the application of a harbor 
simulation, a distinction into the following 
modules might be useful: 

•  Simulation of railroad station 

The railroad and motor vehicle transportation 
business might be run by separate companies 
that maintain their own data.  For the purpose 
of simulation, the railroad transportation 
company might have implemented a simulation 
model of their business that can be included in 

a logistical simulation.  The advantage is that 
when the simulation is executed, it can always 
access  the current railroad station data. 

A relevant simulation problem could be the 
question if it is possible for the railroad station 
to handle a certain amount of cargo.  The 
amount of cargo is communicated through the 
HLA interface by other federates. In response, 
the railroad station federate can report its 
current state to other federates. 

•  Simulation of the motor carrier 

The same applies to the simulation of the 
motor carrier.  According to the current order 
load of the motor carrier, a computer 
simulation could determine if the carrier is able 
to process a given amount of cargo. 

•  Simulation of fork lifts 

Another federate could simulate the forklifts 
used to move the containers.  This federate 
could rely on current maintenance data from 
the service shop in order to determine the 
number of available fork lifts and their current 
status. 

•  Simulation of cargo ships 

A last federate might be established to simulate 
incoming and outgoing ships with their 
characteristic data. 

4.2 External interoperability 
In addition to several simulation federates, an 
HLA federation can also include non-
simulation federates that do not directly 
contribute to the simulation.  This is called 
external interoperability.  The following 
section describes how non-simulation com-
ponents can be utilized to further enhance the 
functionality of the system. 

•  Visualization federate(s) 

Visualization federates can be used to observe 
an on-line simulation of the harbor model.  
Using the HLA enables different departments 
of the harbor administration to have different 
views on the specific data of their interest. 



A typical problem of complex systems of this 
kind is that dynamic data is only gathered at 
certain locations in the system.  For instance, 
the position of a specific container is not 
continuously tracked but more likely only 
when the container is unloaded from the ship 
and the next time when it is placed in the 
container storing area. 

A simulation model can be employed to 
interpolate between those system states and the 
visualization federated can be used accordingly 
to enhanced the transparence of the system. 

This approach has been applied in a simulation 
of the streetcar traffic described in (Schulze et. 
al 1999). 

•  Real-time operator training federate(s) 

Equipped with a more sophisticated 
visualization, such as a 3D Virtual Reality 
World, the forklift simulation federate can be 
used to train operators of forklifts using 
authentic data from the logistical simulation. 

•  Decision support federate(s) 

The staff involved in logistical decision-
making can also be simulated as an HLA 
federate. Instead of a programmed algorithm, a 
human decides manually between given 
alternatives (e.g. shipping routes), and can 
evaluate the quality of his/her decision by 
simulating the different consequences.  For this 
purpose, an abstract 2D visualization from a 
bird’s eye view might be sufficient, but a much 
higher simulation speed than real-time is 
desired.  This can be accomplished by simply 
changing the visualization component and not 
including a real-time synchronization federate. 

5 Conclusions and Outlook 
The increase of the interoperability of 
simulation models is one of the trends in the 
future of modeling technology. The need for 
this fact is based on the overcome of stand-
alone solutions. Simulation models have to be 
integrated into different forms of distributed 
information technologies. Web-based 
simulation and HLA offer possibilities to insert 
and extend the interoperability of simulation 

models. First steps have been made in the area 
of harbor simulation and results are shown in 
this paper. The success of theses steps 
circumstantiates the truth of this way. 
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